

FIP - Formatura Iniezione Polimeri S.p.A.

Loc. Pian di Parata 16015 Casella Genova - Italy Tel. +39 010 96211 Fax +39 010 9621209 flsnet.it - fipnet.it

10/2013 LEFLSCAT13

O

SYSTEM SELECTION GUIDE	
APPLICATIONS TABLE	4
FLS PRODUCTS COMPATIBILITY CHART	6
1. MONITORS FOR FLOW, pH/ORP, CONDUCTIVITY MEASUREI AND CONTROL	MENT
Main Features	
FLS M9.02 Flow Monitor	
FLS M9.50 Batch Controller	
FLS M9.05 Conductivity Monitor	
FLS M9.06 pH/ORP Monitor	
FLS M9.03 Dual-Parameter Flow Monitor	
FLS M9.07 Dual-Parameter Conductivity and Flow Monitor	
FLS M9.08 Dual-Parameter pH/ORP and Flow Monitor	

2. INSERTION PADDLEWHEEL, TURBINE AND ELECTROMAGNETIC FLOW SENSORS

FLS F3.00 Paddlewheel Flow sensor	36
FLS F3.20 High pressure Paddlewheel Flow sensor	43
FLS F6.30 Paddlewheel Flow transmitter	46
FLS F3.10 Paddlewheel Mini Flow sensor	50
FLS F3.05 Paddlewheel Flow switch	53
FLS F6.60 Flow Magmeter	57
FLS F6.61 Hot Tap Flow Magmeter	
FLS F111 Hot Tap Paddlewheel and Turbine Flow sensors	63
Installation & Operating Guidelines for Insertion Flow Sensors	

3. IN LINE ULTRA LOW FLOW AND OVAL GEAR SENSORS

FLS ULF Ultra Low Flow sensor	72
FLS F3.80 Oval Gear Flow sensor	76
Installation & Operating Guidelines for In line Flow Sensors	81

4. BULB AND FLAT pH/ORP ELECTRODES

FLS pH/ORP 200 Epoxy body Bulb electrodes	. 84
FLS pH/ORP 400 Glass body Bulb electrodes	.87
FLS pH/ORP 600 PVCC body Flat Surface electrodes	.90
Installation & Operating Guidelines for pH/ORP Electrodes	

5. POTENTIOMETRIC AND INDUCTIVE CONDUCTIVITY SENSORS

FLS C150-200 Graphite or Platinum Conductivity sensors	. 100
FLS C100-300 Stainless Steel Conductivity sensors	. 103
FLS C6.30 Inductive Conductivity transmitter	. 106
Installation & Operating Guidelines for Conductivity Sensors	. 110

6. INSTALLATION FITTINGS FOR FLOW SENSORS AND ANALYTICAL ELECTRODES

Standard Insertion Installation	113
Hot Tap Insertion Installation	
Specific adapters for Analytical Electrodes Installation	131

7. SPARE PARTS AND ACCESSORIES FOR MONITORS, FLOW SENSORS AND ANALYTICAL ELECTRODES

Spare Parts	1;	3	5	j
Accessories	11	21	0)

8. TECHNICAL INFORMATION

Flow measurement	14	4	3
Analytical measurement	1	5	0

The data given in this leaflet are offered in good faith. No liability can be accepted concerning technical data that are not directly covered by recognized international standards. FIP-FLS reserves the right to carry out any modification to the products shown in this leaflet.

Installation and maintenance operations should be made by professionals.

SYSTEM SELECTION GUIDE

HOW TO CHOOSE THE MEASURING SYSTEM

The present section gives suggestions to select the proper instruments according to your specific liquids and applications.

1

DEFINE THE WORKING CONDITIONS

Clarifying the following data is critical to make the proper system choices and to get the best performances.

- Type of measurement
- Range of measurement
- Pipe material, size and standard
- Media (for chemical compatibility evaluation)
- Temperature & Pressure required
- Performances required
- Presence of solids
- Liquid viscosity

2

CHOOSE THE SENSOR TECHNOLOGY

Looking at the Application Table is possible to determine which sensor family can be applied to your specific process. In case you are interested to deepen, you can also refer to the Technical Information section for additional information.

3

CHOOSE THE INSTRUMENT

Look at the FLS Products Compatibility Chart for an overview of all the possible sensor-monitor-transmitter combinations. Different input/output options, different visualization options and different installation options are available to perfectly fit your process needs.

4

DEFINE THE INSTALLATION CONDITIONS

The last step is related to the process connection: a wide range of fittings and accessories is available for the installation on different pipe sizes and materials as well as for hot tap or submersible installations.

APPLICATIONS TABLE

r

PRODUCT SELECTION GUIDE BY LIQUID/OPERATIVE CONDITIONS

	FLS Insertion Paddlewheel and Electromagnetic Flow Sensors								
	F3.00	F3.20	F6.30	F3.10	F3.05	F6.60	F111	F6.61	
clean liquid	1	1	1	1	1	1	1	1	
dirty liquid	3	3	3	3	3	1	3	1	
low viscous liquid	2	2	2	3	2	2	2	2	
high viscous liquid	3	3	3	3	2	3	3	3	
low corrosive liquid	1	1	1	2	1	1	1	1	
high corrosive liquid	1	2	1	3	1	2	2	2	
fibrous slurry	3	3	3	3	3	1	3	1	
abrasive slurry	3	3	3	3	3	1	3	1	
no conductive liquid	1	1	1	1	1	3	1	3	
pulsating flow	3	3	3	3	3	3	3	3	
high temperature	1	1	2	3	1	1	2	2	
high pressure	2	1	2	3	2	3	2	2	
big pipes	3	3	3	3	3	3	1	1	

	Flow and	e Ultra low Oval Gear sors	FLS Bulb and Flat pH/ORP Electrodes			FLS Potentiometric and Inductive Conductivity Sensor		
	ULF	F3.80	pH/ORP 200	pH/ORP 400	pH/ORP 600	C150-200	C100-300	C6.30
clean liquid	1	1	1	1	1	1	1	1
dirty liquid	3	3	2	3	1	2	1	1
low viscous liquid	2	1	2	2	2	2	1	1
high viscous liquid	3	1	3	3	3	3	2	1
low corrosive liquid	1	1	1	1	1	3	2	1
high corrosive liquid	1	1	2	2	1	3	3	1
fibrous slurry	3	3	2	3	1	3	1	1
abrasive slurry	3	3	2	3	2	3	2	1
no conductive liquid	1	1	3	1	2	3	1	3
pulsating flow	3	2	1	1	1	1	1	1
high temperature	2	3	3	1	2	3	2	3
high pressure	3	3	2	1	2	2	2	3
big pipes	3	3	3	1	1	3	3	3

LEGENDA

1 = Generally Suitable 2 = Worth Consideration

3 = Unsuitable

PRODUCT SELECTION GUIDE BY PROCESS/MARKET

Г

		FLS Insertion Paddlewheel and Electromagnetic Flow Sensors									
	F3.00	3.00 F3.20 F6.30 F3.10 F3.05 F6.60 F111 F6.61									
fertigation / agriculture											
swimming pool & SPAs											
waste water treatment						-					
water and pure water treatment											
food & beverages						-					
water distribution & leak detection											
sewage						-		-			
mining slurries											
dosing system											
pump protection											
HVAC & Heat exchangers											
detergents/disinfectant production & dosing											
metal finishing/ textile process											

	FLS In line Ultra low Flow and Oval Gear Sensors		FLS Bulb and Flat pH/ORP Electrodes			FLS Potentiometric and Inductive Conductivity Sense		
	ULF	F3.80	pH/ORP 200	pH/ORP 400	pH/ORP 600	C150-200	C100-300	C6.30
fertigation / agriculture								
swimming pool & SPAs								
waste water treatment							-	
water and pure water treatment								
food & beverages				•		-		
water distribution & leak detection								
sewage					-			-
mining slurries								-
dosing system	-	•						
pump protection								
HVAC & Heat exchangers								
detergents/disinfectant production & dosing	-	-				-		
metal finishing/textile process								

LEGENDA

Best cost effective option

FLS PRODUCTS COMPATIBILITY CHART

	FLS Insertion Paddlewheel and Electromagnetic Flow Sensors compatibili with FLS Instruments					atibility	
	M9.02	M9.50	M9.05	M9.06	M9.03	M9.07	M9.08
F3.00 Paddlewheel Flow sensor	•						
F3.20 High pressure Paddlewheel Flow sensor							
F6.30 Paddlewheel Flow transmitter							
F3.10 Paddlewheel Mini Flow sensor							
F3.05 Paddlewheel Flow switch							
F6.60 Flow Magmeter							-
F6.61 Hot Tap Flow Magmeter	•						
F111 Hot Tap Paddlewheel and Turbine Flow sensor	•						

	In Line Ultra Low Flow and Oval Gear Sensors compatibility with FLS Instrum					nstruments	
	M9.02	M9.50	M9.05	M9.06	M9.03	M9.07	M9.08
ULF Ultra Low Flow sensor	-						-
F3.80 Oval Gear Flow sensor							

			Bulb and F	lat pH/ORP	Electrodes					
	M9.02	M9.50	M9.05	M9.06	M9.03	M9.07	M9.08			
pH/ORP 200 Epoxy body Bulb electrodes										
pH/ORP 400 Glass body Bulb electrodes										
pH/ORP 600 PVCC Body Flat Surface electrodes										

	Potentiometric and Inductive Conductivity Sensors						
	M9.02	M9.50	M9.05	M9.06	M9.03	M9.07	M9.08
C150-200 Graphite or Platinum Conductivity sensors							
C100-300 Stainless steel Conductivity sensors							
C6.30 Inductive Conductivity transmitter							

MONITORS FOR FLOW, PH/ORP, CONDUCTIVITY MEASUREMENT AND CONTROL HIGH VISIBLE SCREEN AND QUICK CALIBRATION SYSTEM FOR MAXIMISED PERFORMANCES

NEW FLS M9.00 LINE INSTRUMENTS FOR FLOW, PH/ORP, CONDUCTIVITY MEASUREMENT AND CONTROL

New FLS M9.00 line of monitors and transmitters includes single and dual channel interfaces for different parameters measurement such as Flow, pH, ORP, Conductivity and their combination. The new instruments are powered by a new generation mistake-proof software and are characterized by a 4" full graphic display combined with the traditional 5 push-button keypad.

MAXIMISED PERFORMANCES FOR MAXIMISED SATISFACTION

New input combinations for dual-parameter measurement, more output options.

- Single and dual parameter monitors New FLS M9.00 range includes upgraded single-parameter monitors and advanced dual parameter devices for the combined measurement of Flow, pH, ORP and Conductivity.
- Efficient and cost-effective solution New FLS monitors connected to all FLS insertion paddlewheel sensors, magmeters or in-line sensors as well as to a full range of pH/ORP and conductivity electrodes provide the most efficient and cost-effective solution for a wide range of application.
- Useful combinations of output options The different combination of output options allows to manage several remote functions and devices basing on even one measured value.

A broad proposal for an extended range of applications!

SO POWERFUL, SO SIMPLE

Quick calibration with a guided and mistake-proof system, help on board, customizable devices.

• Guided calibration procedure

The new software has been designed to allow the quickest set-up time while following the simple tutorial calibration procedure minimizes the risk of mistakes.

• No need for instruction manual An additional dedicated procedure helps for the very first set-up of the monitor that becomes even more easy and safer.

• Mistake free setting The different menus for basic setting and advanced calibrations are fully supported by indications directly displayed on the screen and by an help on board to better clarify the different options.

Setting operation is a snap!

WIDEN YOUR VIEW

A Wider screen to get more information, more visibility, more calibration support.

• Long distance visible screen

The 4-inch full graphic display can show up to 3 different measuring parameters at the same time or a single one in full screen visualization.

• Leading-edge alert message A multicolor backlight will indicate the status of the monitor: normal working condition, calibration mode and an innovative, efficient, red full screen alarm status alert.

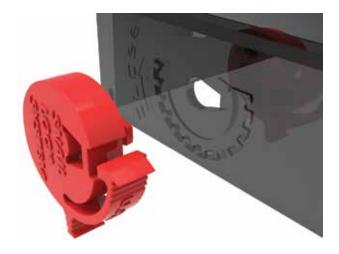
More info displayed The help-on-board suggestions are clearly readable on the screen and the instructions are widely explained in a talky way.

Bright and smart to simplify your life!

ALL YOU NEED IN ANY SITUATION

A rock solid construction with a wide screen suitable for compact, panel or wall mounting installation.

Quickest fix-up

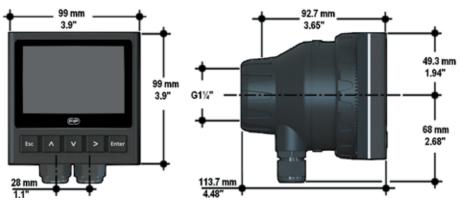

<u>Compact installation</u>, recommended for flow monitors, gets even more reliable thanks to the new water-proof case and a handy fixing system without screws or any other metal parts subject to corrosion.

• Breaking new fixing snail

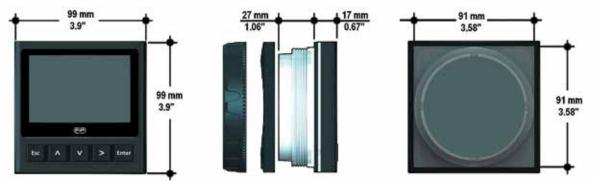
<u>Panel installation</u> is simplified by the new concept fixing "snail". Brackets or other little parts are no longer needed.

Larger wiring space <u>Wall installation</u> is possible using a special large box perfect to ensure a proper room for a comfortable and safe wiring operation.

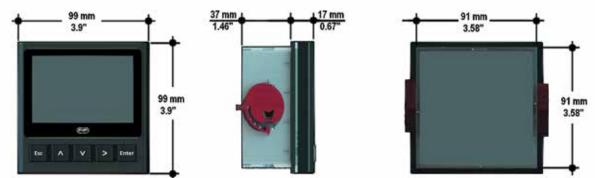
11

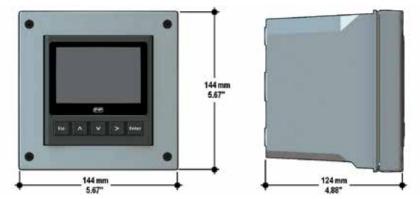

INSTRUMENTS TECHNICAL FEATURES

	Single Parameter				
	Digital Outputs	Analog Outputs	Relay Outputs	Power Supply	Mounting
M9.02 Flow Monitor	2 * Solid State Relays	1 * 4-20mA	1 * mechanical relay	24VDC/220VAC	Compact/Panel/ Wall
M9.50 Batch Controller	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall
M9.05 Conductivity Monitor	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall
M9.06 pH/ORP Monitor	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall


			Dual Parameter				
	Digital Outputs	Analog Outputs	Relay Outputs	Power Supply	Mounting		
M9.03 Dual-Parameter Flow Monitor	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall		
M9.07 Dual-Parameter Conductivity and Flow Monitor	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall		
M9.08 Dual-Parameter pH/ORP and Flow Monitor	2 * Solid State Relays	2 * 4-20mA	2 * mechanical relays	24VDC/220VAC	Panel/Wall		

INSTALLATION AND DIMENSIONS


COMPACT MOUNTING


PANEL MOUNTING - ONLY FOR M9.02

PANEL MOUNTING - ALL MONITORS EXCEPT F9.02

WALL MOUNTING

The new FLS M9.02 is a powerful flow monitor designed to convert the frequency signal of FLS flow sensors into a flow rate. M9.02 is equipped with a wide full graphic display 4" which shows measured values clearly and a lot of other useful information. Moreover, due to a multicolor display plus a powerful backlight, measurement status can be determined easily from afar also. A tutorial software quarantees a mistake-proof and fast set up of every parameters. Calibration can be performed just fixing installation features or using a reference value through a new "in-line calibration". A 4-20mA output is available to remote flow rate to a external device. A proper combination of digital outputs allows customized setups for any process to be controlled.

APPLICATIONS

- Water treatment systems
- Industrial waste water treatment and recovery
- Water distribution
- Filtration systems
- Swimming pools & SPAIrrigation & Fertigation
- Leak detection
- Cooling water monitoring • Processing and manufacturing industry
- Chemical production

- Wide full graphic display
- Multicolor backlight
- · Help on board
- Installation flexibility
- · Fast, intuitive and mistake-proof calibration software
- Mechanical relay for external device control
- · Solid State Relays for programmable alarms
- Multilanguage menu

General

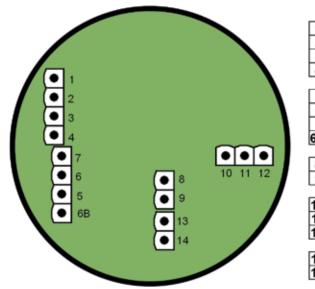
- · Associated sensors: FLS hall effect flow sensors with frequency output or FLS F6.60 flow magmeters
- Materials:
- Case: ABS
- Display window: PC
 Panel & Wall gasket: silicone rubber
- Keypad: 5-button silicone rubber
- · Display:
- LC full graphic display
 Backlight version: 3-colours
- Backlight activation: User adjustable with 5 levels of timing
- Update rate: 1 second
- Enclosure: IP65 front
- Flow input range (frequency): 0÷1500Hz
- Flow input accuracy (frequency): 0,5%

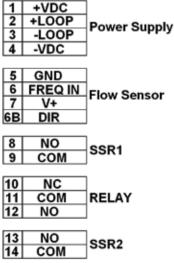
Electrical

- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- Optically isolated from current loop
- Short circuit protected
- 1 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- Max loop impedance: 800 Ω @ 24 VDC 250 Ω @
- 12 VDC
- 2 x Solid State Relay output:
- User selectable as MIN alarm, MAX alarm, Pulse Out, Window alarm, Freq Out, Off - Optically isolated, 50 mA MAX sink, 24 VDC MAX
- pull-up voltage
- Max pulse/min: 300
- Hysteresis: User selectable

WIRING CONNECTIONS

Rear Terminal View


- 1 x Relav output:
- User selectable as MIN alarm, MAX alarm, Pulse
- Out, Window alarm, Off Mechanical SPDT contact
- Expected mechanical life (min. operations): 107
- Expected electrical life (min. operations): 105 N.O./ N.C.switching capacity 5A/240VAC
- Max pulse/min: 60
- Hysteresis: User selectable


Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

			M9.02 F	low Monitors		
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)
M9.02	Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	450
M9.02.P1	Panel mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	500
M9.02.W1	Wall mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	550
M9.02.W2	Wall mount Flow monitor	110 - 230 VAC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	650

Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Lenght	Watted materials	Weight (gr.)
M9.02.01	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	PVCC/EPDM	550
M9.02.02	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	PVCC/FPM	550
M9.02.03	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	PVCC/EPDM	550
M9.02.04	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	PVCC/FPM	550
M9.02.05	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	PVDF/EPDM	550
M9.02.06	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	PVDF/FPM	550
M9.02.07	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	PVDF/EPDM	550
M9.02.08	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	PVDF/FPM	550
M9.02.09	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	SS316L/EPDM	600
M9.02.10	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	SS316L/FPM	600
M9.02.11	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	SS316L/EPDM	600
M9.02.12	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	SS316L/FPM	600
M9.02.13	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	BRASS/EPDM	600
M9.02.14	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	LO	BRASS/FPM	600
M9.02.15	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	BRASS/EPDM	600
M9.02.16	Field mount Flow monitor	12 - 24 VDC	3/4 wire	Flow (Frequency)	1*(4-20mA), 2*(S.S.R.), 1*(mech. relay)	L1	BRASS/FPM	600

16

FLS M9.50 **BATCH CONTROLLER**

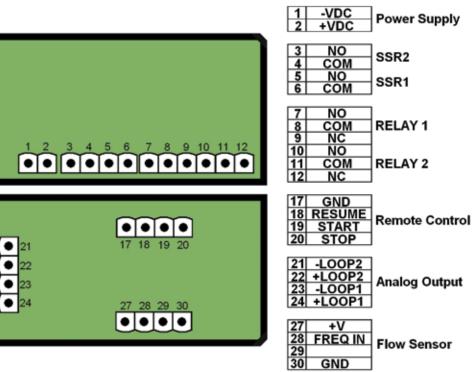
The new FLS M9.50 is a electronic device dedicated to control accurately batching or blending of different liquids. A 4" wide full graphic display shows measured values clearly and a lot of other useful information. Moreover, thanking to a multicolor display plus a powerful backlight, batching status can be determined easily from afar also. A tutorial software guarantees a mistake-proof and fast set up of every settings. Few advanced options are available to increase precision as well as timing of batch. Possibility of setting different volumes correlated to specific calibration factors maximizes system flexibility guaranteeing highest level of accuracy. A proper package of outputs grants to control and to monitor the batching system remotely.

APPLICATIONS

- Batch processes
- Chemical additions
- Filling processes
- Blending applications
- Dosing system
- Bottling processes

- Wide full graphic display
- Multicolor backlight visualization
- · Help on board
- External start, stop and resume
- Intuitive batch volumes setting
- Two stage shutdown control
- Overrun compensation and alarm
- Missing signal alarm

General


- Associated sensors: FLS hall effect flow sensors with frequency output or FLS F6.60 flow magmeters
- Materials:
- case: ABS
- display window: PC
- panel & wall gasket: silicone rubber
- keypad: 5-button silicone rubber
- Display:
- LC full graphic display
- backlight version: 3-colours
- backlight activation: User adjustable with 5 levels of timing
- update rate: 1 second
- enclosure: IP65 front
- Flow input range (frequency): 0÷1500Hz
- Flow input accuracy (frequency): 0,5%

Electrical

- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- Optically isolated from current loop
- Short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- Max loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC
- user selectable as: Valve control, Batch completion, Flow rate
- 2 x Solid State Relay output:
- optically isolate redy output. - optically isolated, 50 mA MAX sink, 24 VDC MAX
- pull-up voltage - max pulse/min: 300

WIRING CONNECTIONS

Rear Terminal View

- hysteresis: user selectable
- user selectable as: Start batch, End batch, End of batch pulse. Off
- 2 x Relay output:
- mechanical SPDT contact
- expected mechanical life (min. operations): 107
- expected electrical life (min. operations): 105 N.O./
- N.C.switching capacity 8A/240VAC
- max pulse/min: 60
- hysteresis: User selectable
- user selectable as:
- OUT1 Batch: Batch in progress indication

OUT2 - Option: Two-stage shutdown, end of batch, overrun or missing signal alarm

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

			M9.50 Ba	atch controllers		
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)
M9.50.P1	Panel mount Batch controller	12 - 24 VDC	3/4 wire	Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550
M9.50.W1	Wall mount Batch controller	12 - 24 VDC	3/4 wire	Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650
M9.50.W2	Wall mount Batch controller	110 - 230 VAC	3/4 wire	Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750

FLS M9.05 conductivity monitor

The new FLS M9.05 is a powerful conductivity monitor studied to fit a broad range of applications included ultrapure water process. A 4" wide full graphic display shows measured values clearly together with many other useful information. Moreover, due to the multicolor bright backlight, measurement status can be determined easily also from very long distance. A tutorial software guarantees a mistake-proof and fast set up of every parameter. Measured values can be showed as resistivity or TDS in according with customer needs. A cell constant freely fixable allows to use all types of 2-cell conductivity probe. Two 4-20mA output grants to remote values of conductivity and temperature to external devices. A proper combination of digital outputs allows customized setups for any process to be controlled.

APPLICATIONS

- Water treatment and regeneration
- Industrial waste water treatment and recovery
- Softener process
- Filtration systems
- Desalination process
- Demineralized water production
- Reverse osmosis/EDI process
 Cooling water monitoring
- Processing and manufacturing industry
- Chemical production

- Wide full graphic display
- Multicolor backlight visualization
- · Help on board
- UPW temperature compensation
- · Cell constant settable freely
- Values in conductivity, resistivity, TDS
- Analog output for temperature remoting
- Mechanical relay for external device control
- Solid State Relays for programmable alarms

		FF 3 0		2.1
			n	nS .
	, had			
		51	00 "	nA.
		0 00		
ED	IIER I		VFIGU	IKE
		EP		

General

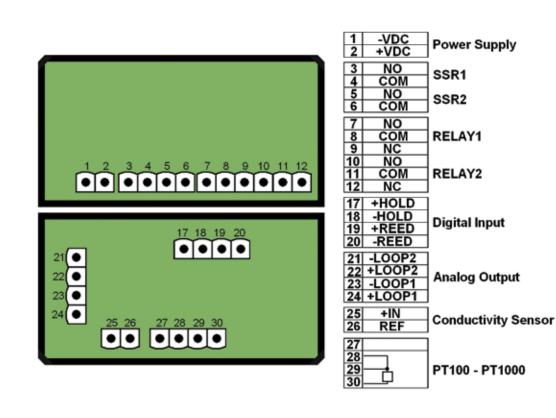
- · Associated sensors: FLS conductivity sensors and FLS temperature sensors
- Materials:
- case: ABS
- display window: PC
- panel & wall gasket: silicone rubber
 keypad: 5-button silicone rubber
- Display:
- LC full graphic display
- backlight version: 3-colours
- backlight activation: User adjustable with 5 levels of timing
- update rate: 1 second
- enclosure: IP65 front
- Conductivity input range: 0,055÷200000µS
- Conductivity measurement accuracy: ± 2.0 % of reading value
- Temperature input range: -50÷150°C (-58÷302°F) (with Pt100-Pt1000)
- Temperature measurement resolution: 0,1°C/°F (Pt1000); 0,5°C/°F (Pt100)

Electrical

- Supply Voltage: 12 to 24 VDC ± 10% regulated FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- optically isolated from current loop
- short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- max loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC

WIRING CONNECTIONS

Rear Terminal View


- 2 x Solid State Relay output:
- user selectable as MIN alarm, MAX alarm, Window
- alarm, Proportional Pulse, Timed Pulse, Off - optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: User selectable
- 2 x Relay output:
- user selectable as MIN alarm, MAX alarm, Window
- alarm, Proportional Pulse, Timed Pulse, Off
- mechanical SPDT contact - expected mechanical life (min. operations): 107
- expected electrical life (min. operations): 10⁵ N.O./
- N.C.switching capacity 5A/240VAC
- max pulse/min: 60
- hysteresis: User selectable

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE RoHS Compliant
- GOST R

			M9.05 Cond	luctivity monite	ors	
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)
M9.05.P1	Panel mount Conductivity monitor	12 - 24 VDC	3/4 wire	Conductivity	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550
M9.05.W1	Wall mount Conductivity monitor	12 - 24 VDC	3/4 wire	Conductivity	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650
M9.05.W2	Wall mount Conductivity monitor	110 - 230 VAC	3/4 wire	Conductivity	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750

FLS M9.06 **PH/ORP MONITOR**

The new FLS F9.06 is a powerful pH/ORP monitor designed to satisfy a broad range of applications. A 4" wide full graphic display shows measured values clearly together with many other useful information. Moreover, due to the multicolor bright backlight, measurement status can be determined easily also from very long distance. A tutorial software guarantees a mistake-proof and fast set up of every parameter. A calibration based on automatic buffer recognition plus a in line adjustment allow to achieve a precise and a reliable measurement in every conditions.

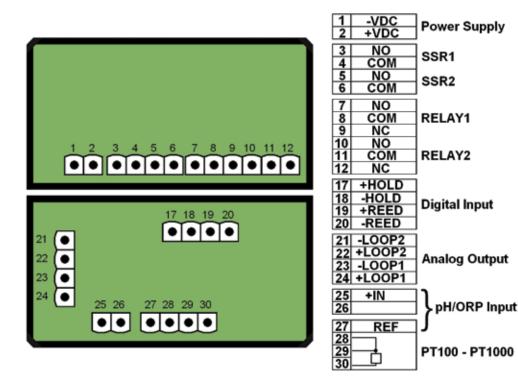
APPLICATIONS

- Water treatment and regeneration
- Industrial waste water treatment and recovery
- Scrubber control
- Neutralization systems
- Heavy metals recovery
- Metal surface coating
- · Processing and manufacturing industry
- Chemical production
- Swimming pools and SPA

- Wide full graphic displayMulticolor backlight visualization
- · Help on board
- Automatic recognition of pH buffers
- In line adjustment
- Analog output for temperature remoting
- Mechanical relay for external device control
- Solid State Relays for programmable alarms

	12.0	FF 3 (
	П-	ТП		н
	in the second	I i hand		
		15	00 "	nA
EN	ITER T	0 001	NFIGU	IRE
		EP		
				-
Esc	Λ	v	>	Enter

General


- · Associated sensors: FLS pH/ORP electrodes and
- FLS temperature sensors
- Materials:
- Case: ABS
- Display window: PCPanel & Wall gasket: silicone rubber
- Keypad: 5-button silicone rubber
- Display:
- LC full graphic display
 Backlight version: 3-colours
- Backlight activation: User adjustable with 5 levels of timing
- Update rate: 1 second
- Enclosure: IP65 front
- pH input range: -2÷16pH
- pH measurement resolution: ± 0.01 pH
- ORP input range: -2000÷ +2000mV
- ORP measurement resolution: ± 1 mV
- Temperature input range: -50÷150°C (-58÷302°F) (with Pt100-Pt1000)
- Temperature measurement resolution: 0,1°C/°F (Pt1000); 0,5°C/°F (Pt100)

Electrical

- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- Optically isolated from current loop
- Short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- Max loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC

WIRING CONNECTIONS

Rear Terminal View

- 2 x Solid State Relay output:
- User selectable as MIN alarm, MAX alarm, Window alarm, Proportional Pulse, Timed Pulse, Off
- Optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- Max pulse/min: 300
- Hysteresis: User selectable
- 2 x Relay output:
- User selectable as MIN alarm, MAX alarm, Window alarm, Proportional Pulse, Timed Pulse, Off
- Mechanical SPDT contact
- Expected mechanical life (min. operations): 107
- Expected electrical life (min. operations): 10⁵ N.O./ N.C.switching capacity 5A/240VAC
- Max pulse/min: 60
- Hysteresis: User selectable

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant GOST R

M9.06 Conductivity monitors							
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)	
M9.06.P1	Panel mount pH/ORP monitor	12 - 24 VDC	3/4 wire	pH/ORP	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550	
M9.06.W1	Wall mount pH/ORP monitor	12 - 24 VDC	3/4 wire	pH/ORP	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650	
M9.06.W2	Wall mount pH/ORP monitor	110 - 230 VAC	3/4 wire	pH/ORP	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750	

FLS M9.03 **DUAL-PARAMETER FLOW MONITOR**

The new FLS M9.03 is a powerful dual flow monitor designed to convert the frequency signals of FLS flow sensors into flow rates. M9.03 is equipped with a 4" wide full graphic display which shows measured values clearly and a lot of other useful information. Moreover, due to a multicolor display plus a powerful backlight, measurement status can be determined easily from afar also. A tutorial software quarantees a mistake-proof and fast set up of every parameters. Calibrations can be performed just fixing installation features or using a reference value through a new "in-line calibration". Two 4-20mA output are available to remote each flow rate to an external device. A proper combination of digital outputs allows customized setups for any process to be controlled.

APPLICATIONS

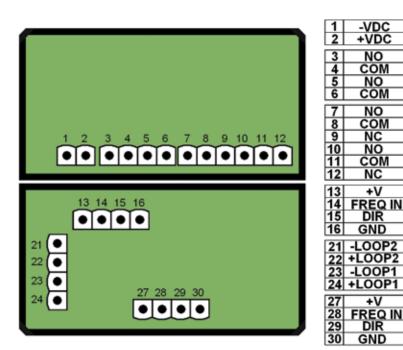
- Water treatment systems
- · Industrial waste water treatment and recovery
- Water distribution
- Filtration systems
- Swimming pools & SPA
 Irrigation & Fertigation
- Leak detection
- · Cooling water monitoring Processing and manufacturing industry
- Chemical production

- Wide full graphic display
- Multicolor backlight
- · Help on board
- Delta flow rates visualization
- · Fast, intuitive and mistake-proof calibration software
- Mechanical relays for external device control
- Solid State Relays for programmable alarms
- Multilanguage menu

General

- · Associated sensors: 2 X FLS hall effect flow sensors with frequency output or FLS F6.60 flow magmeters Materials:
- case: ABS
- display window: PC
 panel & wall gasket: silicone rubber
 keypad: 5-button silicone rubber
- Display:
- LC full graphic display
- backlight version: 3-colours
- backlight activation: User adjustable with 5 levels of timing
- update rate: 1 second
- enclosure: IP65 front
- Flow input range (frequency): 0÷1500Hz
- Flow input accuracy (frequency): 0,5%

Electrical


- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- optically isolated from current loop
- short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- max loop impedance: 800 Ω @ 24 VDC 250 Ω @

12 VDC

- 2 x Solid State Relay output: user selectable as MIN alarm, MAX alarm, Pulse Out, Window alarm, Freq Out, Off
- optically isolated, 50 mÅ MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: user selectable

WIRING CONNECTIONS

Rear Terminal View

- 2 x Relav output:
- user selectable as MIN alarm, MAX alarm, Pulse
- Out, Window alarm, Off mechanical SPDT contact
- expected mechanical life (min. operations): 107
- expected electrical life (min. operations): 105 N.O./
- N.C.switching capacity 5A/240VAC
- max pulse/min: 60
- hysteresis: User selectable

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

-VDC +VDC

NO COM

NO COM

NO

COM NC NO COM

NC

+٧

GND

+V

FREQ IN DIR

GND

FREQ IN DIR

Power Supply

SSR1

SSR2

RELAY1

RELAY2

Flow Sensor 2

Analog Output

Flow Sensor 1

	M9.03 Dual Flow Monitors							
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)		
M9.03.P1	Panel mount Dual Flow monitor	12 - 24 VDC	3/4 wire	2 * Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550		
M9.03.W1	Wall mount Dual Flow monitor	12 - 24 VDC	3/4 wire	2 * Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650		
M9.03.W2	Wall mount Dual Flow monitor	110 - 230 VAC	3/4 wire	2 * Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750		

FLS M9.07 DUAL-PARAMETER CONDUCTIVITY AND FLOW MONITOR

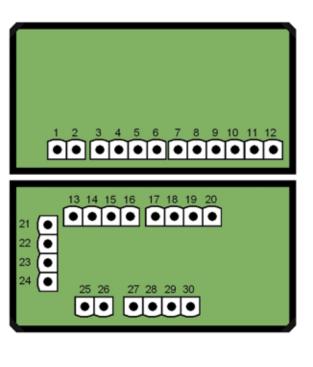
The new FLS M9.07 is a dual monitor which combines conductivity and flow measurements. A 4" wide full graphic display shows measured values clearly together with many other useful information. Moreover, due to a multicolor display plus a powerful backlight, measurement status can be determined easily from afar also. A tutorial software guarantees a mistake-proof and fast set up of every parameters. Different type of calibrations can be performed to fit user needs for both measurements. A 4-20mA output dedicated to each measurement grants to remote values to a external device. A proper combination of digital outputs allows customized setups for any process to be controlled.

APPLICATIONS

- Water treatment and regeneration
- · Industrial waste water treatment and recovery
- Softener process
- Filtration systems
- Desalination process
- Demineralized water production
- Reverse osmosis process
- Cooling water monitoring
- Processing and manufacturing industry
- Chemical production

- Wide full graphic display
- Multicolor backlight
- · Help on board
- Simultaneous measurement of conductivity, temperature and flow
- · Fast, intuitive and mistake-proof calibration software
- Mechanical relay for external device control
- Solid State Relays for programmable alarms
- Multilanguage menus

General


- Associated sensors: FLS conductivity sensors & FLS hall effect flow sensors or FLS F6.60 flow magmeters
- Materials:
- case: ABS
- display window: PC
- panel & wall gasket: silicone rubber
- keypad: 5-button silicone rubber
- Display:
- LC full graphic disply
- backlight version: 3-colours
- backlight activation: User adjustable with 5 levels of timing
- update rate: 1 second
- enclosure: IP65 front
- Conductivity input range: 0,055÷200000µS
 Conductivity measurement accuracy: ± 2.0 % of
- Conductivity r reading value
- Temperature input range: -50÷150°C (-58÷302°F) (with Pt100-Pt1000)
- Temperature measurement resolution: 0,1°C/°F (Pt1000); 0,5°C/°F (Pt100)
- Flow input range (frequency): 0÷1500Hz
- Flow input accuracy (frequency): 0,5%

Electrical

- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- optically isolated from current loop
- short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- max loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC

WIRING CONNECTIONS

Rear Terminal View

1 -VDC 2 +VDC	Power Supply
3 NO 4 COM	SSR1
5 NO 6 COM	SSR2
7 NO 8 COM	RELAY1
9 NC 10 NO	
11 COM 12 NC	RELAY2
13 +V 14 FREQ IN 15 DIR	Flow Sensor
16 GND 17 +HOLD	
18 -HOLD 19 +REED 20 -REED	Digital Input
21 -LOOP2 22 +LOOP2 23 -LOOP1 24 +LOOP1	Analog Output
25 +IN 26 REF	Conductivity Sensor
27 28 29 30	PT100 - PT1000

- 2 x Solid State Relay output:
- user selectable as MIN alarm, MAX alarm, Window alarm, Pulse Out, Proportional Pulse, Timed Pulse, Freq Out, Off
- optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: user selectable
- 2 x Relay output:
 user selectable as MIN alar

- user selectable as MIN alarm, MAX alarm, Window alarm, Pulse Out, Proportional Pulse, Timed Pulse, Freq Out, Off

- mechanical SPDT contact
- expected mechanical life (min. operations): 10⁷
- expected electrical life (min. operations): 10⁵ N.O./
- N.C.switching capacity 5A/240VAC
- max pulse/min: 60
- hysteresis: user selectable

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
 RoHS Compliant
- GOST R
- GOST R

7
7
U
7
-
0
ד
S

M9.07 Conductivity & Flow Monitors							
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)	
M9.07.P1	Panel mount Conductivity & Flow monitor	12 - 24 VDC	3/4 wire	Conductivity, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550	
M9.07.W1	Wall mount Conductivity & Flow monitor	12 - 24 VDC	3/4 wire	Conductivity, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650	
M9.07.W2	Wall mount Conductivity & Flow monitor	110 - 230 VAC	3/4 wire	Conductivity, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750	

FLS M9.08 dual-parameter ph/orp and flow monitor

The new FLS M9.08 is a dual monitor which combines pH/ ORP and flow measurements. A wide full graphic display 4" shows measured values clearly and a lot of other useful information. Moreover, due to a multicolor display plus a powerful backlight, measurement status can be determined easily from afar also. A tutorial software guarantees a mistake-proof and fast set up of every settings. Different type of calibrations can be performed to fit user needs for both measurements. A 4-20mA output dedicated to each measurement grants to remote values to a external device. A proper combination of digital outputs allows customized setups for any process to be controlled.

APPLICATIONS

- Water treatment and regeneration
- Industrial waste water treatment and recovery
- Scrubber control
- Neutralization systems
- Heavy metals recovery
- Metal surface coating
- Processing and manufacturing industry
- Chemical production
- Swimming pools and SPA

- Wide graphic display
- Multicolor backlight visualization
- · Help on board
- Simultaneous measurement of pH/ORP and flow
- Intuitive calibration procedures
- Mechanical relay for external device control
- Solid State Relays for programmable alarms
- Multilanguages menù

General

• Associated sensors: FLS pH/ORP sensors & FLS hall effect flow sensors with frequency output or FLS F6.60 family sensors

- Materials:
- case: ABS
- display window: PC
- panel & Wall gasket: silicone rubber
 keypad: 5-button silicone rubber
- keypad: 5-i
 Display:
- backlight version: 3-colours
- backlight activation: User adjustable with 5 levels of timing
- update rate: 1 second
- enclosure: IP65 front
- pH input range: -2÷16pH
- pH measurement resolution: ± 0.01 pH
- ORP input range: -2000÷ +2000mV
- ORP measurement resolution: ± 1 mV
- Temperature input range: -50÷150°C (-58÷302°F) (with Pt100-Pt1000)
- Temperature measurement resolution: 0,1°C/°F (Pt1000); 0,5°C/°F (Pt100)
- Flow input range (frequency): 0÷1500Hz
- Flow input accuracy (frequency): 0,5%

Electrical

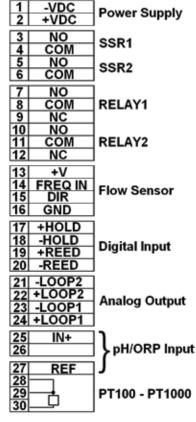
- Supply Voltage: 12 to 24 VDC ± 10% regulated
- FLS hall effect flow Sensor power:
- 5 VDC @ < 20 mA
- optically isolated from current loop
- short circuit protected
- 2 x Current output:
- 4-20 mA, isolated, fully adjustable and reversible
- max loop impedance: 1000 Ω @ 24 VDC

WIRING CONNECTIONS

Rear Terminal View

- 2 x Solid State Relay output:
- user selectable as MIN alarm, MAX alarm, Window alarm, Freq Out, Pulse Out, Proportional Pulse, Timed Pulse, Off
- optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: User selectable
- 2 x Relay output:

- user selectable as MIN alarm, MAX alarm, Window alarm, Freq Out, Pulse Out, Proportional Pulse, Timed


- Pulse, Off
- mechanical SPDT contact
- expected mechanical life (min. operations): 107
- expected electrical life (min. operations): 105 N.O./
- N.C.switching capacity 5A/240VAC
- max pulse/min: 60
- hysteresis: user selectable

Environmental

- Operating temperature: -20 to +70°C (-4 to 158°F)
- Storage temperature: -30 to +80°C (-22 to 176°F)
- Relative humidity: 0 to 95% not condensing

Standards & Approvals

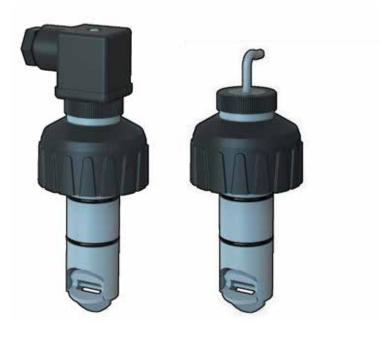
- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

M9.08 pH/ORP & Flow Monitors							
Part No.	Description /Name	Power supply	Wire power Technology	Sensor Input	Output	Weight (gr.)	
M9.08.P1	Panel mount pH/ORP & Flow monitor	12 - 24 VDC	3/4 wire	pH/ORP, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	550	
M9.08.W1	Wall mount pH/ORP & Flow monitor	12 - 24 VDC	3/4 wire	pH/ORP, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	650	
M9.08.W2	Wall mount pH/ORP & Flow monitor	110 - 230 VAC	3/4 wire	pH/ORP, Temperature, Flow (Frequency)	2*(4-20mA), 2*(S.S.R.), 2*(mech. relay)	750	

INSERTION PADDLEWHEEL TURBINE AND ELECTROMAGNETIC FLOW SENSORS INSTALLATION VERSATILITY COMBINED TO APPLICATION FLEXIBILITY

FLS F3.00 **PADDLEWHEEL FLOW SENSOR**

The simple and reliable paddlewheel flow sensor type F3.00 is designed for use with every kind of solid-free liquids. The sensor can measure flow from 0.15 m/s (0.5 ft/s) producing a frequency output signal highly repeatable. A rugged construction and a proven technology guarantee exceptional performances with little or no maintenance required.


A dedicated electronic, with a push-pull output, is available for a safe connection to any kind of PLC/Instrument digital input.

A specially designed family of fittings ensures an easy and quick installation into all pipe materials in sizes from DN15 to DN600 (0.5" to 24").

APPLICATIONS

- Water treatment and regeneration
- Industrial wastewater treatment and recovery
- Textile finishing
- Water distribution
- · Processing and manufacturing industry
- Filtration systems
- Chemical production
- Liquid delivery systems
- · Cooling water monitoring
- Heat Exchangers
- Swimming pools
- Pump protection

- CPVC, PVDF, Brass or Stainless Steel sensor body
- Two sensor lenghts to cover from DN15 up to DN600
- Easy insertion system
- IP65 or IP68 protection class
- Measurement range over 50:1
- High chemical resistance
- Version for battery powered system
- Push-Pull output for universal electrical connection

General (for all version)

• Pipe Size Range: DN15 to DN600 (0.5" to 24") Please refer to Installation Fittings section for more details

- Flow Rate Range: 0.15 to 8 m/s (0.5 to 25 ft./s)
- Linearity: ± 0.75 % of full scale
- Repeatability: ± 0.5 % of full scale
- Minimum Réynolds Number Required: 4500
- Enclosure: IP68 or IP65
- · Wetted Materials:
- sensor Body: CPVC, PVDF, Brass or 316L SS o-rings: EPDM or FPM
- rotor: ECTFE (Halar®)
- shaft: Ceramic (Al₂O₂)
- bearings: Ceramic (Al₂O₂)

Specific for F3.00.H

- Supply voltage: 5 to 24 VDC ± 10% regulated
- Supply current: < 30 mA @ 24 VDC
- Output signal:
- square wave
- frequency: 45 Hz per m/s nominal
- (13.7 Hz per ft/s nominal)
- type: transistor NPN open collector
- output current: 10 mA max
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Specific for F3.00.C

- · Supply voltage: 3 to 5 VDC regulated or
- 3.6 Volt Lithium battery
- Supply current: < 10 µA max
- Output signal:
- square wave

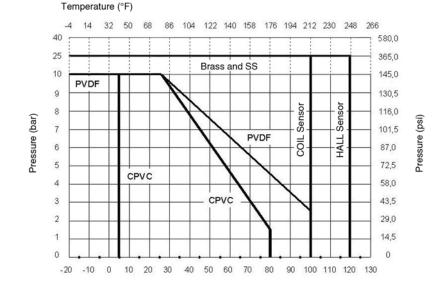
- frequency: 45 Hz per m/s nominal
- (13.7 Hz per ft/s nominal)
- min. input impedance: 100 KΩ
- Cable length: 8 m (26.4 ft) standard, 16 m (52.8 ft) maximum

Specific for F3.00.P

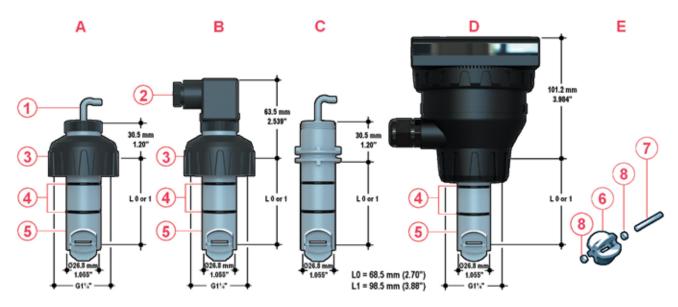
- Supply voltage: 12 to 24 VDC ± 10% regulated
- Supply current: < 30 mA @ 24 VDC
- Output signal:
- square wave
- frequency: 45 Hz per m/s nominal
- (13.7 Hz per ft/s nominal)
- type: Push-Pull (for connection to NPN and PNP inputs)
- output current: 20 mA max
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R


Maximum Operating Pressure / Temperature (25 years lifetime)

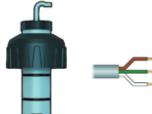
F3.00.H or F3.00.P Sensor


- CPVC body:
- 10 bar (145 psi) @ 25°C (77°F
- 1,5 bar (22 psi) @ 80° C (176°F)
- PVDF body: 10 bar (145 psi) @ 25°C (77°F)
- 2,5 bar (36 psi) @ 100°C (212°F)
- Brass or SS body:
- 25 bar (363 psi) @ 120°C (248°F)

F3.00.C Sensor

- · CPVC body:
- 10 bar (145 psi) @ 25°C (77°F
- 1,5 bar (22 psi) @ 80° C (176°F)
- PVDF body: 10 bar (145 psi) @ 25°C (77°F)
- 2,5 bar (36 psi) @ 100°C (212°F)
- Brass or SS body:
- 25 bar (363 psi) @ 100°C (212°F)

DIMENSIONS

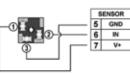

- A F3.00 IP68 Remote Sensor
- B F3.00 IP65 Remote Sensor
- C F3.01 Compact Sensor D F3.01 Compact Sensor + Transmitter
- (sold separately)
- E Paddlewheel system

- 1 Electrical cable: 8 m. (26.4 ft) standard 2 4 pole cable plug according to DIN 43650-B/ISO 6952
 3 UPVC cap for installation into fittings
- 4 O-Ring seals available in EPDM or FPM
- 5 CPVC, PVDF, Brass or Stainless Steel sensor body
- 6 ECTFE Halar[®] (registered trademark of Ausimont-Solvay) Open-cell rotor
- 7 Ceramic shaft
- 8 Ceramic bearings

WIRING CONNECTIONS

F3.00 IP68 Sensor wiring connection

F3.00 IP65 Sensor wiring connection



GND

IN

V+

		F3.00.H.	XX Paddle	wheel Flow Se	ensors (Rem	ote version)	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.00.H.01	Hall	5 - 24 VDC	LO	CPVC/ EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.02	Hall	5 - 24 VDC	LO	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.03	Hall	5 - 24 VDC	L1	CPVC/ EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.04	Hall	5 - 24 VDC	L1	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.05	Hall	5 - 24 VDC	LO	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.06	Hall	5 - 24 VDC	LO	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.07	Hall	5 - 24 VDC	L1	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.08	Hall	5 - 24 VDC	L1	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.09	Hall	5 - 24 VDC	LO	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.10	Hall	5 - 24 VDC	LO	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.11	Hall	5 - 24 VDC	L1	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.12	Hall	5 - 24 VDC	L1	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.25	Hall	5 - 24 VDC	LO	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.26	Hall	5 - 24 VDC	LO	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.27	Hall	5 - 24 VDC	L1	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.28	Hall	5 - 24 VDC	L1	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.13	Hall	5 - 24 VDC	LO	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.14	Hall	5 - 24 VDC	LO	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.15	Hall	5 - 24 VDC	L1	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.16	Hall	5 - 24 VDC	L1	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.17	Hall	5 - 24 VDC	LO	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.18	Hall	5 - 24 VDC	LO	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.H.19	Hall	5 - 24 VDC	L1	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.20	Hall	5 - 24 VDC	L1	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.H.21	Hall	5 - 24 VDC	LO	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.22	Hall	5 - 24 VDC	LO	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.23	Hall	5 - 24 VDC	L1	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.24	Hall	5 - 24 VDC	L1	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.29	Hall	5 - 24 VDC	LO	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.30	Hall	5 - 24 VDC	LO	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.H.31	Hall	5 - 24 VDC	L1	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.H.32	Hall	5 - 24 VDC	L1	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650

		F3.00.C.	XX Paddle	wheel Flow Se	ensors (Rem	ote version)	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.00.C.01	Coil	3 - 5 VDC	LO	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.02	Coil	3 - 5 VDC	LO	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.03	Coil	3 - 5 VDC	L1	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.04	Coil	3 - 5 VDC	L1	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.05	Coil	3 - 5 VDC	LO	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.06	Coil	3 - 5 VDC	LO	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.07	Coil	3 - 5 VDC	L1	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.08	Coil	3 - 5 VDC	L1	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.09	Coil	3 - 5 VDC	LO	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.10	Coil	3 - 5 VDC	LO	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.11	Coil	3 - 5 VDC	L1	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.12	Coil	3 - 5 VDC	L1	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.25	Coil	3 - 5 VDC	LO	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.26	Coil	3 - 5 VDC	LO	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.27	Coil	3 - 5 VDC	L1	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.28	Coil	3 - 5 VDC	L1	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.13	Coil	3 - 5 VDC	LO	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.14	Coil	3 - 5 VDC	LO	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.15	Coil	3 - 5 VDC	L1	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.16	Coil	3 - 5 VDC	L1	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.17	Coil	3 - 5 VDC	LO	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.18	Coil	3 - 5 VDC	LO	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.C.19	Coil	3 - 5 VDC	L1	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.20	Coil	3 - 5 VDC	L1	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.C.21	Coil	3 - 5 VDC	LO	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.22	Coil	3 - 5 VDC	LO	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.23	Coil	3 - 5 VDC	L1	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.24	Coil	3 - 5 VDC	L1	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.29	Coil	3 - 5 VDC	LO	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.30	Coil	3 - 5 VDC	LO	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.C.31	Coil	3 - 5 VDC	L1	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.C.32	Coil	3 - 5 VDC	L1	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650

	F3	.00.P.XX Pad	ldlewheel	Flow Sensors	(for direct o	connection to PLC)	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.00.P.01	Push-Pull	12 - 24 VDC	LO	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.02	Push-Pull	12 - 24 VDC	LO	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.03	Push-Pull	12 - 24 VDC	L1	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.04	Push-Pull	12 - 24 VDC	L1	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.05	Push-Pull	12 - 24 VD C	LO	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.06	Push-Pull	12 - 24 VDC	LO	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.07	Push-Pull	12 - 24 VDC	L1	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.08	Push-Pull	12 - 24 VDC	L1	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.09	Push-Pull	12 - 24 VDC	LO	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.10	Push-Pull	12 - 24 VDC	LO	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.11	Push-Pull	12 - 24 VDC	L1	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.12	Push-Pull	12 - 24 VDC	L1	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.25	Push-Pull	12 - 24 VDC	LO	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.26	Push-Pull	12 - 24 VDC	LO	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.27	Push-Pull	12 - 24 VDC	L1	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.28	Push-Pull	12 - 24 VDC	L1	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.13	Push-Pull	12 - 24 VDC	LO	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.14	Push-Pull	12 - 24 VDC	LO	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.15	Push-Pull	12 - 24 VDC	L1	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.16	Push-Pull	12 - 24 VDC	L1	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.17	Push-Pull	12 - 24 VDC	LO	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.18	Push-Pull	12 - 24 VDC	LO	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.00.P.19	Push-Pull	12 - 24 VDC	L1	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.20	Push-Pull	12 - 24 VDC	L1	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.00.P.21	Push-Pull	12 - 24 VDC	LO	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.22	Push-Pull	12 - 24 VDC	LO	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.23	Push-Pull	12 - 24 VDC	L1	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.24	Push-Pull	12 - 24 VDC	L1	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.29	Push-Pull	12 - 24 VDC	LO	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.30	Push-Pull	12 - 24 VDC	LO	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.00.P.31	Push-Pull	12 - 24 VDC	L1	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.00.P.32	Push-Pull	12 - 24 VDC	L1	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	650

		F3.01.X>	(Paddlew	vheel Flow Sen	sors (Compa	act version)	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.01.H.01	Hall	5 - 24 VDC	LO	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.H.02	Hall	5 - 24 VDC	LO	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.H.03	Hall	5 - 24 VDC	L1	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.H.04	Hall	5 - 24 VDC	L1	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.H.05	Hall	5 - 24 VDC	LO	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.H.06	Hall	5 - 24 VDC	LO	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.H.07	Hall	5 - 24 VDC	L1	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.H.08	Hall	5 - 24 VDC	L1	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.H.09	Hall	5 - 24 VDC	LO	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.H.10	Hall	5 - 24 VDC	LO	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.H.11	Hall	5 - 24 VDC	L1	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.H.12	Hall	5 - 24 VDC	L1	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.H.25	Hall	5 - 24 VDC	LO	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.H.26	Hall	5 - 24 VDC	LO	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.H.27	Hall	5 - 24 VDC	L1	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.H.28	Hall	5 - 24 VDC	L1	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.C.01	Coil	3 - 5 VDC	LO	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.C.02	Coil	3 - 5 VDC	LO	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.C.03	Coil	3 - 5 VDC	L1	CPVC/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.C.04	Coil	3 - 5 VDC	L1	CPVC/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.C.05	Coil	3 - 5 VDC	LO	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.C.06	Coil	3 - 5 VDC	LO	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	250
F3.01.C.07	Coil	3 - 5 VDC	L1	PVDF/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.C.08	Coil	3 - 5 VDC	L1	PVDF/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	300
F3.01.C.09	Coil	3 - 5 VDC	LO	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.C.10	Coil	3 - 5 VDC	LO	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.C.11	Coil	3 - 5 VDC	L1	316SS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.C.12	Coil	3 - 5 VDC	L1	316SS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.C.25	Coil	3 - 5 VDC	LO	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.C.26	Coil	3 - 5 VDC	LO	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	600
F3.01.C.27	Coil	3 - 5 VDC	L1	BRASS/EPDM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650
F3.01.C.28	Coil	3 - 5 VDC	L1	BRASS/FPM	IP68	0.15 to 8 m/s (0.5 to 25 ft./s.)	650

FLS F3.20 **HIGH PRESSURE PADDLEWHEEL** FLOW SENSOR

FLS F3.20 is a paddlewheel flow sensor suitable for system at high pressure and at critical temperature. F3.20 is designed for use with every kind of solidfree liquids in compliance with chemical compatibilities of wetted materials. First quality materials used, as SS for body/ shaft and Halar® for rotor, grant high mechanical performances and an appreciated reliability. Sensor needs a very limited maintenance and, in those cases, it's easy to perform due to a 4 screws system and to a flat gasket in graphite. F3.20 sensor is available for connection to FLS monitors and for PLC connection directly.

SS weld on adapter is available for sensor installation on pipe range from $1\frac{1}{2}$ to 8" (DN40 to DN200).

APPLICATIONS

- Heat Exchangers
- Reverse osmosis
- Cooling systems
- HVAC systems (heating, ventilation and air conditioning)
- Boiler feedwate

- Working range up to 110 bar (1600 PSI)and up to 248°F (120 °C)
 Wide operating range (from 0,15 to 8 m/s)
- · Just one sensor and one fitting for a wide range of pipe dimensions (from $1\frac{1}{2}$ " to 8")
- High linearity and repeatability
- · Limited maintanance needed and easy execution
- Available special version for direct connection to PLC

General

• Pipe Size Range: DN40 to DN200

(0.5 to 8 in). Refer to Installation Fittings section for more details

- Flow Rate Range: 0.15 to 8 m/s (0.5 to 25 ft./s)
- Linearity: ± 0.75% of full scale
- Repeatability: ± 0.75% of full scale
 Pressure: 110 bar (1600 psi)
 Temperature: 120 °C (248 °F)

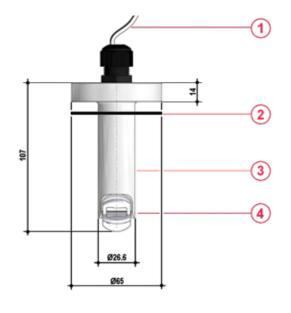
- Minimum Reynolds Number Required: 4500
 Enclosure: IP68
- · Wetted Materials:
- sensor Body: 316L SS
- sealing system: graphite flat gasket
 rotor: ECTFE (Halar®)
- shaft: AISI316L

Specific for F3.20.H

- Supply voltage: 5 to 24 VDC regulated
- Supply current: < 30 mA @ 24 VDC
- Output signal:
- square wave
- frequency: 45 Hz per m/s nominal(13.7 Hz per ft/s nominal)
- output type: transistor NPN open collector
- output current: 10 mA max
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Specific for F3.20.P

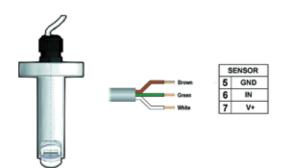
- Supply voltage: 12 to 24 VDC regulated
- Supply current: < 30 mA @ 24 VCC
- Output signal:
- square wave


- output frequency: 45 Hz per m/s nominal (13.7 Hz per ft/s nominal)

- output type: Push Pull (digital input NPN or PNP)
- output current: IOut max < 20 mA
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R


DIMENSIONS

- 1 Electrical cable: 8 m. (26.4 ft) standard
- 2 Flat gasket
- 3 316L SS sensor body 4 ECTFE Halar® Open-cell rotor and
- Stainless Steel Shaft

WIRING CONNECTIONS

F3.20 IP68 Sensor wiring connection

F3.20.X.01 High Pressure Paddlewheel Flow Sensors											
Part No. Version Power supply Length Wetted materials Enclosure Flow Rate Range						Flow Rate Range	Weight (gr.)				
F3.20.H.01	Hall	5- 24 VDC	107 mm	INOX 316L	IP 68	0.15 to 8 m/s (0.5 to 25 ft./s)	600				
F3.20.P.01											

FLS F6.30 **PADDLEWHEEL FLOW TRANSMITTER**

The new FLS F6.30 is a blind transmitter based on paddlewheel. It can be applied for the measurement of every kind of solid-free liquids. The F6.30 can provides different output options using a 4-20 mA and a Solid State Relay. Analog output can be used for long distance transmission and SSR can be set as an alarm or as a volumetric pulse output. F6.30 Insertion Magmeter is provided with an USB interface and a dedicated software (freely downloadable from FLS web site) which allows to easily calibrate instrument and to intuitively set outputs by a PC. The specific design allows an accurate flow measurement over a wide dynamic range in pipe sizes from DN15 (0.5") to DN600 (24").

APPLICATIONS

- · Industrial water and wastewater treatment
- Cooling water systems
- Swimming pools
- Flow control and monitoring
- Water treatment
- Water regeneration plant
- Processing and manufacturing industry
- Water distribution

- High chemical resistance
- Pipe size range: from DN15 (0,5") to DN600 (24")
- Low pressure drop
- Friendly calibration procedure
- 4-20 mA, frequency or volumetric pulse output settable by USB
- SSR settable as alarm by PC

General

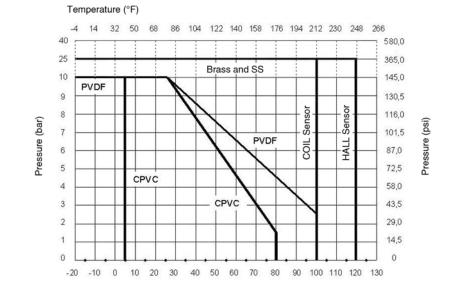
- Pipe Size Range: DN15 to DN600 (0.5" to 24") Please refer to Installation Fittings section for more details
- Flow Rate Range: 0.15 to 8 m/s (0.5 to 25 ft./s)
- Linearity: ± 0.75 % of full scale
- Repeatability: ± 0.5 % of full scale
- Minimum Réynolds Number Required: 4500
- Enclosure: IP65
- Wetted Materials:
- sensor Body: CPVC, PVDF, Brass or 316L SS o-rings: EPDM or FPM
- rotor: ECTFE (Halar®)
- shaft: Ceramic (Al₂O₂)
- bearings: Ceramic (Al₂O₂)

Electrical

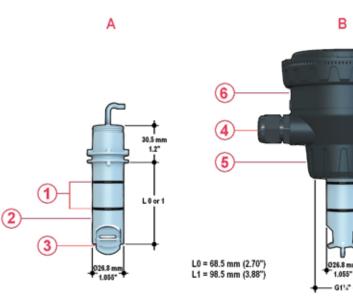
- Power Supply:
- 12 to 24 VDC ± 10% regulated (reverse polarity and short circuit protected)
- maximum current: consumption: 150 mA
- protective earth: < 10 Ω
- 1 X Current output:
- 4-20 mA, isolated
- max. loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC
- 1 X Solid State Relay output:
- user selectable as MIN alarm, MAX alarm,
- Volumetric, Pulse Out, Window alarm, Off
- optically isolated, 50 mA MAX sink, 24 VDC MAX
- pull-up voltage
- max pulse/min: 300
- hysteresis: User selectable

Environmental

- Storage Temperature: -30°C to +80°C (-22°F to
- 176°F)
- Ambient Temperature: -20°C to +70°C (-4°F to 158°F)
- Relative Humidity: 0 to 95% (non-condensing)


Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R


Maximum Operating Pressure / Temperature (25 years lifetime)

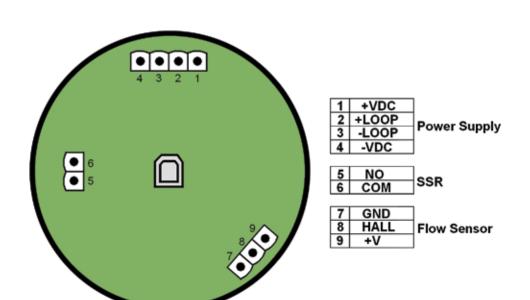
F6.30 Transmitter

- CPVC body:
- 10 bar (145 psi) @ 25°C (77°F
- 1,5 bar (22 psi) @ 80° C (176°F)
- PVDF body: 10 bar (145 psi) @ 25°C (77°F) - 2,5 bar (36 psi) @ 100°C (212°F)
- Brass or SS body:
- 25 bar (363 psi) @ 100°C (212°F)

DIMENSIONS

- A Sensor body B F6.30 Paddlewheel Flow transmitter
- O-Ring (EPDM or FPM)
 Sensor body PVCC, PVDF, Brass, 316L SS
 Halar Rotor, Ceramic shaft & bearings

4 Cable Gland


89.6 mm 3.528"

L0 or 1

5 ABS cap for installation into fittings 6 Electronic box

WIRING CONNECTIONS

Rear Terminal View

		FLS	F6.30.X	(Paddlewheel	Flow Transr	nitters	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F6.30.01	Hall	12 - 24 VDC	L0	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	750
F6.30.02	Hall	12 - 24 VDC	LO	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	750
F6.30.03	Hall	12 - 24 VDC	L1	CPVC/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	800
F6.30.04	Hall	12 - 24 VDC	L1	CPVC/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	800
F6.30.05	Hall	12 - 24 VDC	LO	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	750
F6.30.06	Hall	12 - 24 VDC	LO	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	750
F6.30.07	Hall	12 - 24 VDC	L1	PVDF/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	800
F6.30.08	Hall	12 - 24 VDC	L1	PVDF/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	800
F6.30.09	Hall	12 - 24 VDC	LO	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	950
F6.30.10	Hall	12 - 24 VDC	LO	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	950
F6.30.11	Hall	12 - 24 VDC	L1	316SS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	1000
F6.30.12	Hall	12 - 24 VDC	L1	316SS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	1000
F6.30.13	Hall	12 - 24 VDC	LO	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	950
F6.30.14	Hall	12 - 24 VDC	LO	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	950
F6.30.15	Hall	12 - 24 VDC	L1	BRASS/EPDM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	1000
F6.30.16	Hall	12 - 24 VDC	L1	BRASS/FPM	IP65	0.15 to 8 m/s (0.5 to 25 ft./s.)	1000

FLS F3.10 **PADDLEWHEEL MINI FLOW SENSOR**

The simple and reliable paddlewheel technology has been moved into this **MINIFLOW** sensor type FLS F3.10, designed for use with every kind of solid-free liquids. The sensor can measure flow from 0.25 m/s (0.8 ft/s) producing a frequency output signal highly repeatable. A rugged construction and a proven technology guarantee exceptional performances with little or no maintenance required. The very small dimension and a special design make it suitable for installation on FIP standard Tee-fittings from DN15 to DN40 (0.5 to 1.5 in.).

APPLICATIONS

- Water treatment
- Filtration systems
- Pure water production
- Water monitoring
- Fertigation

- IP68 enclosure
- ABS body with EPDM or FPM seal
- ABS 4-blade paddlewheel (no bearings)
- Mono-directional design
- Installation on standard FIP tees
- PVDF body version on request

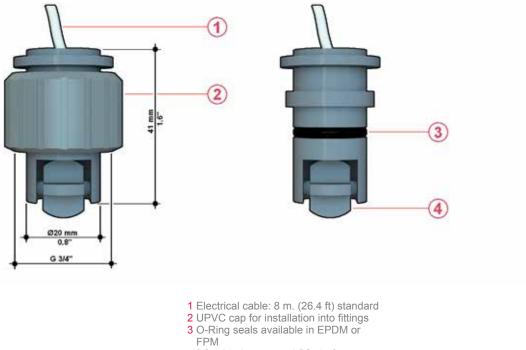
General

• Pipe Size Range: DN15 to DN40 (0.5 to 1 1/2") Please refer to Installation Fittings section for more details

- Flow Rate Range: 0.25 to 4 m/s (0.8 to 12,5 ft./s)
- Linearity: ± 1 % of full scale
- Repeatability: ± 0.5 % of full scale. Minimum Reynolds Number Required: 4500
- Enclosure: IP68

- Operating Pressure:
 max 10 bar (145 psi) @ 20 °C (68°F)
 max 2 bar (30 psi) @ 70 °C (158°F)
- Operating Pressure: -20°C to 70°C (-4°F to 158°F).
 Wetted Materials:
 sensor Body: ABS (PVDF for special version)
 o-rings: EPDM or FPM
 rotor: ABS (DVDF for special version)

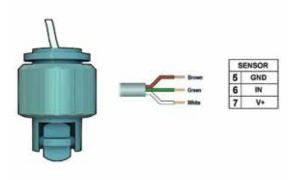
- rotor: ABS (PVDF for special version)
- shaft: AISI 316L
- magnets: SmCo5


Electrical

- Supply current: < 30 mA @ 24 VDC
- Output signal:
- square wave
- output frequency: 15 Hz per m/s nominal (4,6 Hz per ft/s nominal)
- output type: transistor NPN open collector
- output current: 10 mA max
- Cable length: 2 m (6,5 ft) standard, 300 m (990 ft)
- maximum

Standards & Approvals

- Manufactured under ISO 9001 Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R


DIMENSIONS

4 BS 4-blade rotor and SS shaft

WIRING CONNECTIONS

F3.10 IP68 Sensor wiring connection

F3.10.H.XX Paddlewheel Miniflow Sensors														
Part No. Version Power supply Length Wetted materials Enclosure Flow Rate Range						Weight (gr.)								
F3.10.H.01	Hall	5 - 24 VDC	41 mm	ABS/EPDM	IP68	0.25 to 4 m/s (0.8 to 12,5 ft./s)	100							
F3.10.H.02	Hall	5 - 24 VDC	41 mm											

FLS F3.05 PADDLEWHEEL FLOW SWITCH

The simple insertion paddlewheel flow switch type F3.05 is designed to protect a pump from running dry or pumping against a closed valve. It is equipped with a mechanical SPST contact activated when the flow velocity drops below the factory preset value of 0.15 m/s (0.5 ft/s). A specially designed family of fitting ensures an easy and quick installation into all pipe materials in sizes from DN15 to DN600 (0.5" to 24").

APPLICATIONS

- Pump protection
- Filtration systems Cooling water systems

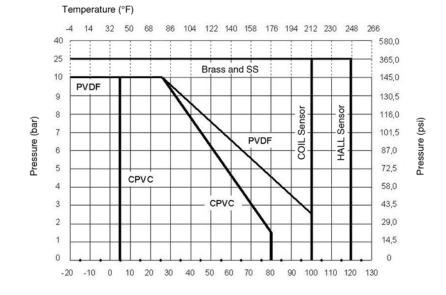
- CPVC, PVDF, Stainless Steel or Brass sensor body
 Easy insertion system
- · High chemical resistance
- No-Flow alarm relay outputHighly visible Local Bicolour Status Indicator
- Maintenance free
- Very low pressure drop

General

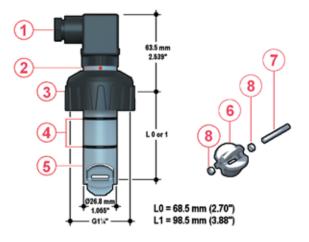
• Pipe Size Range: DN15 to DN600 (0.5 to 24 in.) Please refer to Installation Fittings section for more details

- Supply voltage: 12 to 24 VDC ± 10% regulated
- Supply voltage: 12 to 24 VDC 1 10/0 regulated
 Supply current: < 50 mA
 Relay Output: mechanical SPDT contact, 1A @ 24 VDC, 0.1A @ 230 VAC
- · Local Status Indicator:
- GREEN Led = Flow
- RED Led = No Flow
- No-Flow Rate Point: 0.15 m/s (0.5 ft./s)
- Enclosure: IP65
- · Wetted Materials:
- sensor Body: CPVC or PVDF or 316L SS o-rings: EPDM or FPM
- rotor: ECTFE (Halar®)
- shaft: Ceramic (Al₂O₂)
- bearings: Ceramic (Al,O,)

Standards & Approvals

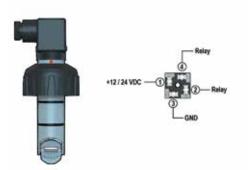

- Manufactured under ISO 9001 Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

Maximum Operating Pressure / Temperature (25 years lifetime)


F3.05 Sensor

- · CPVC body:
- 10 bar (145 psi) @ 25°C (77°F) 1,5 bar (22 psi) @ 80° C (176°F)

- PVDF body: 10 bar (145 psi) @ 25°C (77°F)
- 2,5 bar (36 psi) @ 100°C (212°F)
- · Brass or SS body:
- 25 bar (363 psi) @ 120°C (248°F)


DIMENSIONS

- 1 4 pole cable plug according to DIN 43650-B/ISO 6952
- 2 Local Bicolour Status LED
 3 UPVC cap for installation into fittings
 4 O-Ring seals available in EPDM or FPM
- 5 CPVC, PVDF or Stainless Steel sensor body
- 6 ECTFE (Halar®) Open-cell rotor, brass sensor body
- 7 Ceramic shaft
- 8 Ceramic bearings

WIRING CONNECTIONS

F3.05 sensor wiring connection

			F3.05.XX	Paddlewheel	Flow Switcl	nes	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.05.01	Hall	12 to 24 VDC	L0	CPVC/EPDM	IP65	-	250
F3.05.02	Hall	12 to 24 VDC	LO	CPVC/FPM	IP65	-	250
F3.05.03	Hall	12 to 24 VDC	L1	CPVC/EPDM	IP65	-	300
F3.05.04	Hall	12 to 24 VDC	L1	CPVC/FPM	IP65	-	300
F3.05.05	Hall	12 to 24 VDC	LO	PVDF/EPDM	IP65	-	250
F3.05.06	Hall	12 to 24 VDC	LO	PVDF/FPM	IP65	-	250
F3.05.07	Hall	12 to 24 VDC	L1	PVDF/EPDM	IP65	-	300
F3.05.08	Hall	12 to 24 VDC	L1	PVDF/FPM	IP65	-	300
F3.05.09	Hall	12 to 24 VDC	LO	316L SS/EPDM	IP65	-	600
F3.05.10	Hall	12 to 24 VDC	LO	316L SS/FPM	IP65	-	600
F3.05.11	Hall	12 to 24 VDC	L1	316L SS/EPDM	IP65	-	650
F3.05.12	Hall	12 to 24 VDC	L1	316L SS/FPM	IP65	-	650
F3.05.13	Hall	12 to 24 VDC	LO	BRASS/EPDM	IP65	-	600
F3.05.14	Hall	12 to 24 VDC	LO	BRASS/EPDM	IP65	-	600
F3.05.15	Hall	12 to 24 VDC	L1	BRASS/EPDM	IP65	-	650
F3.05.16	Hall	12 to 24 VDC	L1	BRASS/EPDM	IP65	-	650

FLS F6.60 **FLOW MAGMETER**

The new FLS F6.60 is a flow meter without moving mechanical parts which can be applied for the measurement of dirty liquids so long as they are conductive and homogeneous. The F6.60 can provide three different options: frequency output to be connected to FLS flow monitors, 4-20 mA output for long distance transmission and PLC connection and the new volume pulse output freely settable.

F6.60 Insertion Magmeter is provided with an USB interface and a dedicated software (freely downloadable from FLS web site) which allows to easily set by a PC all parameters according to specific installation requirements (as full scale and cut off). The specific design allows an accurate flow measurement over a wide dynamic range in pipe sizes from DN15 (0.5") to DN600 (24").

APPLICATIONS

- Water and waste water treatment
- Raw water intake
- Industrial water distribution
- Textile industry
- · Pools, spas and aquariums
- HVAC
- Processing and manufacturing industry
- Sea water applications

- No moving parts, no wear, maintenance free
- High mechanical resistance
- Accurate measurement of dirty liquids
- Pipe size range: from DN15 (0,5") to DN600 (24")
- Flow Rate Range adjustable from 0.05 to 8 m/s (0.15 to 25 ft/s)
- Low pressure drop
- User Settable Operating Parameters
- 4-20 mA, frequency or volumetric pulse output
- Bi-directional flow measurement selectable
- Special versions for salt-water applications (high concentrations of chlorides like sea water) and for high temperature conditions

General

• Pipe Size Range: DN15 to DN600 (0.5" to 24") Please refer to Installation Fitting section for more details

- Max Flow Rate Range:
- from 0.05 to 8 m/s (0.15 to 26.24 ft/s)
- Full Scale: 8 m/s (26.24 ft/s)
- Linearity: ± 1% of reading + 1,0 cm/s
- Repeatability: ± 0.5% of reading • Enclosure: IP65
- Materials:
- case: PC/ABS
- gasket: EPDM
 Wetted Materials:
- sensor body: 316L SS/PVDF; 316L SS/ PEEK; CuNi alloy/PVDF
- o-rings: EPDM or FPM
- electrodes: 316LSS or CuNi allov

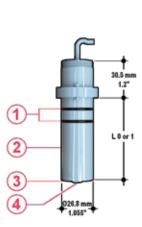
Electrical

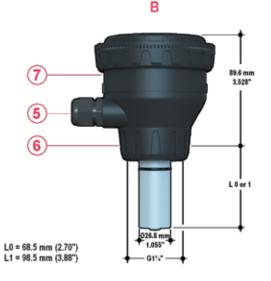
- Power Supply:
- 12 to 24 VDC ± 10% regulated (reverse polarity and short circuit protected)
- maximum current: consumption: 250 mA
- protective earth: < 10 Ω
- Current output:
- 4-20 mA, isolated
- max. loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC
- positive or negative flow indication
- Solid State Relay output:
- user selectable as MIN alarm, MAX alarm,
- Volumetric, Pulse Out, Window alarm, Off
- optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: User selectable
- Open Collector output (Frequency):

Δ

- Ttype: Open Collector NPN

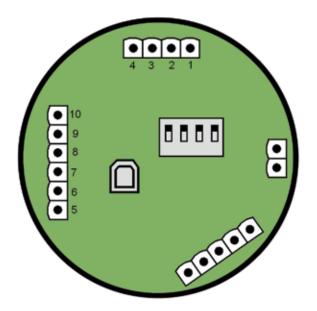
- frequency: 0 800 Hz
- max. Pull-up Voltage: 24 VDC
- max. Current: 50 mA, current limited
 compatible with FLOWX3 M9.02, 9.03, M9.50
- Open Collector output (Direction):
- type: Open Collector NPN
- max. Pull-up Voltage: 24 VDC
- max. Current: 50mA, current limited
- flow direction:
- 0 VDC arrow-wise
- + VDC anti arrow-wise


Enviromental


- Storage Temperature: -30°C to +80°C (-22°F to
- 176°F • Ambient Temperature: -20°C to +70°C (-4°F to 158°F)
- Relative Humidity:0 to 95% (non-condensing)
- · Fluid conditions:
- homogeneous liquids, pastes or slurries, also with solid content
- min electrical conductivity: 20 µS
- temperature:
- PVDF bottom version: -10 °C to +60 °C (14 °F to 140 °F
- PÉEK bottom version: -10 °C +150 °C (14 °F to 302 °F)
- Max. operating pressure:
 16 bar @ 25°C (232 psi @ 77°F)
- 8.6 bar @ 60°C (124 psi @ 140°F)

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R



A Sensor body B F6.60 Magmeter 1 O-Ring (EPDM or FPM) 2 Sensor body (316L SS or CuNi) 3 Isolation Plate (PVDF or PEEK) 4 Electrodes (316L SS or CuNi)

5 Cable Gland 6 ABS cap for installation into fittings 7 Electronic box

WIRING CONNECTIONS

Rear Terminal View

1	+VDC	
2	+LOOP	Bower cumply
3	-LOOP	Power supply
4	-VDC	
_		
5	NO	
6	COM	
7	+DIR	Digital Output
8	-DIR	Digital Output
9	+FREQ	
10	-FREQ	

INSERTION FLOW SENSORS

			F6.	60.XX Flow Magmo	eters		
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F6.60.09	Blind	12 - 24 VDC	LO	316L SS & PVDF 316L SS/ EPDM	IP65	0,05 – 8 m/s bi-directional	950
F6.60.10	Blind	12 - 24 VDC	LO	316L SS & PVDF 316L SS/ FPM	IP65	0,05 - 8 m/s bi-directional	950
F6.60.11	Blind	12 - 24 VDC	L1	316L SS & PVDF316L SS/ EPDM	IP65	0,05 - 8 m/s bi-directional	1000
F6.60.12	Blind	12 - 24 VDC	L1	316L SS & PVDF316L SS/ FPM	IP65	0,05 - 8 m/s bi-directional	1000
F6.60.33	Blind	12 - 24 VDC	LO	CuNi & PVDF CuNi/ EPDM	IP65	0,05 – 8 m/s bi-directional	950
F6.60.34	Blind	12 - 24 VDC	LO	CuNi & PVDF CuNi/ FPM	IP65	0,05 – 8 m/s bi-directional	950
F6.60.35	Blind	12 - 24 VDC	L1	CuNi & PVDF CuNi/ EPDM	IP65	0,05 – 8 m/s bi-directional	1000
F6.60.36	Blind	12 - 24 VDC	L1	CuNi & PVDF CuNi/ FPM	IP65	0,05 – 8 m/s bi-directional	1000
F6.60.38	Blind	12 - 24 VDC	LO	316L SS & PEEK 316L SS/ FPM	IP65	0,05 – 8 m/s bi-directional	950
F6.60.40	Blind	12 - 24 VDC	L1	316L SS & PEEK 316L SS/ FPM	IP65	0,05 – 8 m/s bi-directional	1000

FLS F6.61 **hot tap flow magmeter**

The new FLS F6.61 Hot Tap Insertion Magmeter is a flowmeter without moving mechanical parts which can be applied for the measurement of dirty liquids so long as they are conductive and homogeneous. The sensor can provide three different options: frequency output to be connected to FLS flow monitors, 4-20 mA output for long distance transmission and PLC connection and the new volume pulse output freely settable. FLS F6.61 Insertion Magmeter is provided with an USB interface and a dedicated software (freely downloadable from FLS web site) which allows to easily set by a PC all parameters according to specific installation requirements.

The sensor can be assembled in a wide dynamic range of pressurized pipe sizes from DN50 (2") to DN900 (36") using a standard clamp saddle and an isolation ball valve.

APPLICATIONS

- Water distribution
- Leak Detection or Monitoring
- Raw water intake
- Water and waste water treatment
- Ground water remediation
- Irrigation

- Adjustable sensor position
- Hot-Tap installation
- Operating parameters settable by PC interface
- Pressure intake
- Standard 1 1/4" BSP process connection
- No moving parts, no wear, maintenance free
- Flow Rate Range settable from 0.05 to 8 m/s (0.15 to 25 ft/s)
- Accurate measurement of dirty liquids
- 4-20 mA, frequency or volume pulse outputs
- · Bi-directional flow measurement selectable

General

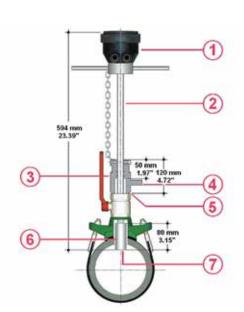
• Pipe Size Range: DN50 to DN900 (2" to 36"). Special version on request for other sizes. Please refér to Installation Fitting section for more details • Max Flow Rate Range:

- from 0.05 to 8 m/s (0.15 to 26.24 ft/s) Full Scale: 8 m/s (26.24 ft/s)
- Linearity: ± 1% of reading + 1,0 cm/s
- Repeatability: ± 0.5% of reading
- Enclosure: IP65
- Materials:
- case: PC/ABS
- gasket: EPDMWetted Materials:
- sensor body: 304 SS/PVDF o-rings: EPDM or FPM
- electrodes: 316LSS

Electrical

- Power Supply:
 12 to 24 VDC ± 10% regulated (reverse polarity and short circuit protected)
- maximum current: consumption: 250 mA
- protective earth: < 10 Ω
- Current output:
- 4-20 mA, isolated
- max. loop impedance: 800 Ω @ 24 VDC 250 Ω @ 12 VDC
- positive or negative flow indication
- Solid State Relay output:
- user selectable as MIN alarm, MAX alarm,
- Volumetric, Pulse Out, Window alarm, Off
- optically isolated, 50 mA MAX sink, 24 VDC MAX pull-up voltage
- max pulse/min: 300
- hysteresis: User selectable
- Open Collector output (Frequency):
- type: Open Collector NPN
- frequency: 0 800 Hz

DIMENSIONS


- max. pull-up voltage: 24 VDC
- max. current: 50 mA, current limited
- compatible with FLOWX3 M9.02, M9.03
- Open Collector output (Direction):
- type: Open Collector NPN
- max. Pull-up Voltage: 24 VDC
- max. Current: 50mA, current limited
- flow direction:
- 0 VDC arrow-wise
- + VDC anti arrow-wise

Enviromental

- Storage Temperature: -30°C to +80°C (-22°F to
- 176°F
- Ambient Temperature: -20°C to +70°C (-4°F to 158°F)
- Relative Humidity:0 to 95% (non-condensing)
- · Fluid conditions:
- homogeneous liquids, pastes or slurries, also with solid content
- Min Electrical Conductivity: 20 µS
- Temperature:
- PVDF bottom version: -10 °C to +60 °C (14 °F to 140 °F)
- PÉEK bottom version: -10 °C +150 °C (14 °F to 302 °F)
- Max. operating pressure:
 16 bar @ 25°C (232 psi @ 77°F)
 8.6 bar @ 60°C (124 psi @ 140°F)

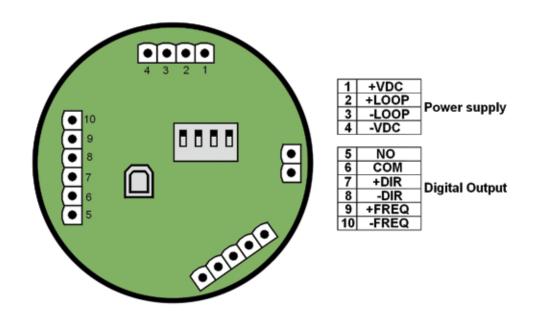
Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

1 Magmeter electronic device

2 Sliding rod

3 AISI 304 SS joint for sensor installation


4 Pressure intake

5 Process connection 1 ¹/₄" gas threaded 6 AISI 304 SS adjustable sensor body 7 AISI 316 L electrodes and PVDF bottom

WIRING CONNECTIONS

Rear Terminal View

	F6.61.XX Hot Tap Flow Magmeter											
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)					
F6.61.01	Hot-tap	12-24 VDC	615mm	304 SS/ PVDF/316LSS	IP65	0.05 to 8 m/s (0.15 to 25 ft/s)	6000					

FLS F111 hot tap paddlewheel and turbine flow sensors

The metal flow sensor type F111 offers high strength and mechanical resistance applied to hot-tap insertion technology. The sensor can be assembled in pressurized pipes using a proper clamp saddle for a precise positioning into the pipe and get the maximum accuracy.

The sensor is available with both paddlewheel and turbine technologies.

The paddlewheel sensor can measure flow from 0.15 m/s (0.5 ft/s) while the turbine sensor can start measuring from 0.08 m/s (0.26 ft/s) and the bi-directional version is able to recognize the direction of the flow.

APPLICATIONS

- Water distribution
- Leak Detection or Monitoring
- Irrigation
- Water treatment and regeneration
- Ground Water RemediationFiltration systems

NSERTION FLOW SENSORS

- Adjustable sensor position
- Stainless steel or brass construction
- Paddlewheel or Turbine technology
- E-CTFE rotor with ceramic shaft and bearings or PVDF turbine
- Hot-Tap installation
- Safety chain
- Pressure intake
 Standard 1 ¼" BSP process connection
- Battery powered version
- Compatible with most Data Loggers

General

- Pipe Size Range: DN50 to DN900 (2" to 36"). Special versions on request for other sizes
- Linearity: ± 0.75 % of full scale
- Repeatability: ± 0.5 % of full scale
- Minimum Reynolds Number Required: 4500
- Enclosure: IP68
- · Maximum operating pressure/temperature: 20 bar (290 psi) @ 80°C (176°F)
- Sensor fitting joint: 1 1/4" BSP (male)
- Pressure Intake: quick connection 3/8"
- Wetted Materials:
- sensor Body: AISI 304 Stainless Steel
- sensor joint: AISI 304 Stainless Steel
- o-rings: EPDM rotor: ECTFE (Halar®)
- turbine: PVDF
- shaft: Ceramic (Al₂O₂) - bearings: Ceramic (Al₂O₂)

Specific for F111.H

- Flow Rate Range: 0.15 to 8 m/s (0.5 to 25 ft/s) (0.5 to 25 ft/su manuale 0.15 to 10 m/s (0.5 to 33 fps)
- Supply voltage: 5 to 24 VDC ±10%, regulated
- Supply current: < 30mA @ 24 VDC
- Output signal:
- square wave
- output frequency: 45 Hz per m/s nominal (13.7 Hz per ft/s nominal)
- output type: transistor NPN open collector
- output current: 10 mA max
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Specific for F111.C

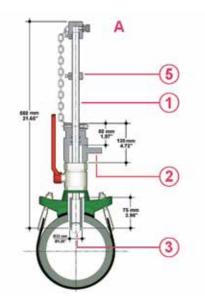
- Flow Rate Range: 0.15 to 8 m/s (0.5 to 25 ft/s)
- Supply voltage: 3 to 5 VDC ±10%, regulated or 3.6
- Volt Lithium battery
- Supply current: < 10 μA

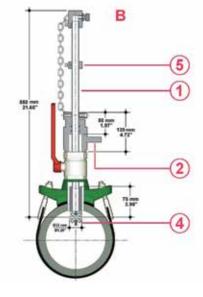
- Output signal:
- square wave
- output frequency: 45 Hz per m/s nominal (13.7 Hz per ft/s nominal)
- min. input impedance: 100 kΩ
- Cable length: 8 m (26.4 ft) standard, 16 m (52.8 ft) maximum

Specific for F111.HT

- Flow Rate Range: 0.08 to 8 m/s (0.26 to 25 ft/s)
- Supply voltage: 5 to 24 VDC ± 10%, regulated
- Supply current: < 30mA @ 24 VDC
- Output Signal:
- square wave
- output frequency: 20 Hz per m/s nominal (6.1 Hz per ft/s)
- output type: transistor NPN open collector
- output current: 10 mA max
- Cable length: 8 m (26.4 ft) standard, 300 m (990 ft) maximum

Specific for F111.HT.BD


- Flow Rate Range: 0.08 to 1.5 m/s (0.26 to 4.9 ft/s)
- Supply voltage: 4 to 5 VDC ±10%, regulated
 Supply current: 0.6 mA @ 5 VDC
- Output Signal:
- square wave
- output frequency: 10 Hz per m/s nominal (3.05 Hz per ft/s nominal)
- output type: CMOS active output


• Cable length: 8 m (26.4 ft) standard, 100 m (330 ft) maximum

Standards & Approvals

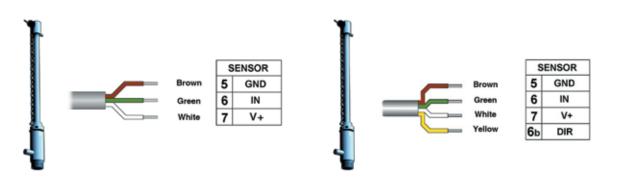
- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

DIMENSIONS

A F111 Paddlewheel Sensor

B F111 Turbine Sensor

- 1 Sliding Rod 2 Pressure intake
- 3 ECTFE (Halar®) Open-cell rotor


4 PVDF Turbine

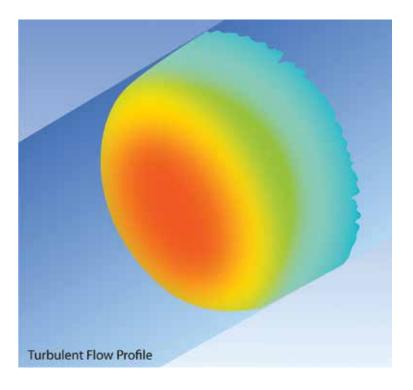
5 Clinching Ring

WIRING CONNECTIONS

F111 Monodirectional sensor wiring connection

F111 Bi-directional sensor wiring connection

INSERTION FLOW SENSORS


		F111.)	K.XX Hot	Tap Insertion Flow	Sensors		
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F111.H.01	Hall Paddlewheel	5 - 24 VDC	550mm	SS AISI 304/EPDM	IP 68	0.15 to 8 m/s (0.5 to 25 ft./s.)	5000
F111.H.02	Hall Paddlewheel	5 - 24 VDC	550mm	BRASS/EPDM	IP 68	0.15 to 8 m/s (0.5 to 25 ft./s.)	5000
F111.C.01	Coil Paddlewheel	3 - 5 VDC	550mm	SS AISI 304/EPDM	IP 68	0.15 to 8 m/s (0.5 to 25 ft./s.)	5000
F111.C.02	Coil Paddlewheel	3 - 5 VDC	550mm	BRASS/EPDM	IP 68	0.15 to 8 m/s (0.5 to 25 ft./s.)	5000
F111.HT.01	Hall Turbine	5 - 24 VDC	550mm	SS AISI 304/EPDM	IP 68	0.08 to 8 m/s (0.26 to 25 ft./s.)	5000
F111.HT.BD	Turbine Bi- directional	4 - 5 VDC	550mm	SS AISI 304/EPDM	IP 68	0.08 to 1.5 m/s (0.26 to 4.9 ft./s.)	5000

INSTALLATION & OPERATING GUIDELINES FOR INSERTION FLOW SENSORS

INSERTION FLOW SENSORS

INSTALLATION GUIDELINES

Insertion Technology Main Features	 All the insertion technology flow sensors are velocity-based flow measurement devices; The installation typically requires only a small hole in the pipe for sensor perpendicular mounting; Sensors dimension are not pipe size specific: almost independent from pipe cross section.
Flow Sensor Installation	The placement of a flow meter is critical to get an accurate and reliable reading. For a flow meter proper performance it is necessary to check: • Full pipe at every time; • Uniform flow velocity into the pipe.
Full Pipe Condition	If the pipe is not full the flow meter will give inaccurate reading even if the sensor is always completely submerged. Sensor will make the flow rate calculation on the assumption that the pipe is full, leading to overestimation of the flow. A pump intake or an outlet on the bottom of a tank does not necessary ensure the pipe always running full; air can be sucked by pumps or it could remain entrapped when the pipe was empty. Anyway the flowmeter should be always situated in the lowest point of the pipe and there should be downstream the flowmeter a part of the pipe placed 1 x ID higher than where the flow meter is located.
Uniform Flow Velocity	Insertion flow meters measure the velocity of the liquid. It is important the velocity is uniform across the entire cross section of the pipe in the location of the sensor. Flow patterns are distorted both downstream and upstream of any disturbance. In a pipe, liquid at the edge of the pipe moves slower than towards the center because of friction along the walls. In a straight run of pipe, area with similar velocities can be depicted as concentric rings.

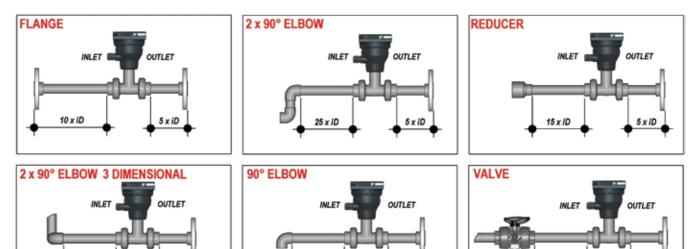
40 x iD

5 x iD

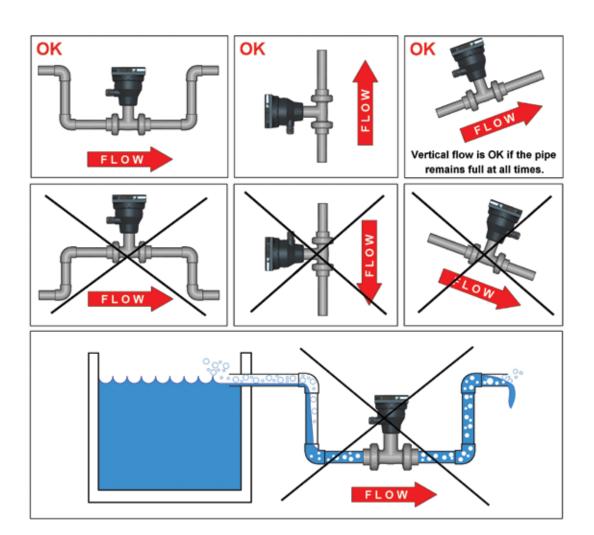
• The six most common installation configurations shown in fig. 1 help in selecting the best location in the pipeline for paddlewheel flow sensor as well for magmeter flow sensor.

• The three configurations in fig. 2 ensure that the pipe is always full: for a correct measurement the sensor can NOT be exposed to air bubbles at any time.

The three installations in Fig. 3 should be avoided unless you are absolutely sure the sensor is not exposed to air bubbles.
In gravity-flow systems the connection to the tank must be designed so


In gravity-flow systems the connection to the tank must be designed so the level does not drop below the outlet: this to avoid pipe to draw air in from the tank causing a inaccurate measurement of sensor (see Fig. 4).
For more information, please refer to EN ISO 5167-1.

50 x iD

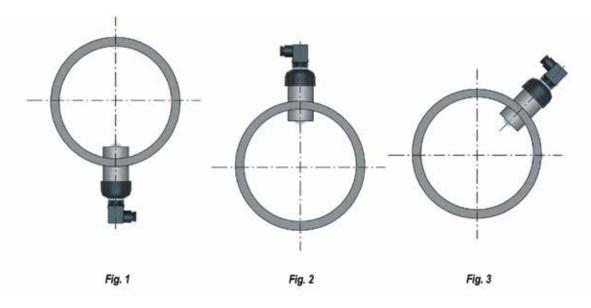

5 x iD

• Always maximize distance between flow sensors and pumps.

5 x iD

20 x iD

Mounting Positions


Measuring part of sensor (rotor for paddlewheel and pins for magmeter) should be positioned at 12% of ID where, basing on insertion theory, average velocity can be measured.

The reading accuracy of insertion flow sensors can be affected by: • air bubbles;

sediments;

• friction between shaft and bearings (only for paddlewheel).

In a horizontal pipe runs, the mounting position to get the best performances is at a 45° angle (*Fig. 3*) to avoid air bubbles as well sediments. Vertical position (*Fig. 2*) can be chosen in case air bubbles are not present. Do not mount the sensor on the bottom of the pipe (*Fig. 1*) if sediments are likely. Do not mount paddlewheel at 90° otherwise friction can affect measurement. Except last consideration about 90° installation, all previous evaluations are valid for magmeter sensor also. Installation in a vertical pipe runs can be done fixing any orientation. Upward flow is preferred to ensure full pipe.

K-Factor

K factor is a conversion value which has to be fixed in order to convert sensor output (frequency) to a flow rate.

K factor depends on ID of pipe where sensor has been installed and, as each pipe has a specific wall thickness, in general it's necessary to know pipe size (external diameter), pipe material and all info which can determine internal diameter.

Provided k- factors are referred to water so in case sensors are applied to measure a different liquid (with a different viscosity and/or density) a recalibration on-site can be needed using a secondary standard.

Maximize sensor performances

In order to get the maximum accuracy, a recalibration using a reference value of flow rate could help to evaluate a fine tuning of k-factor in according with specifications of installation site. This procedure is strongly suggested when sensors are applied to measure a different liquid than water and in case distances reported into EN ISO 5167-1 can't be respected in the installation.

OPERATING GUIDELINES

Paddlewheel Flow Sensors	Rotor and shaft are in direct contact with the fluid. Since the paddle will spin at a velocity that is directly proportional to the rate of flow, these components will wear over time. Rotors which have operated at high velocity will tend to wear more than units operated at low velocities. Because every fluid has different characteristics, it is difficult to estimate the life expectancy of these components. The chemical compatibilities of each wetted component to the chemical being measured should be considered to choose the best material option. Axles and paddles can be easily replaceable in order to maintain better performances. Avoid using paddlewheel flowmeters for measuring very dirty fluid, or liquids with rocks or pebbles that could break or damage the rotor or the axle. Solids could affect sensor response also modifying friction of shaft. Don't use paddlewheel in case liquid contains fibers. A neglected paddlewheel will in time have degraded accuracy. Even if in case liquid contains solids we suggest to apply a magmeter, you can use a paddlewheel but in such case it's strongly suggested to plan a cleaning procedure of wetted parts periodically. For cleaning procedure use detergent or chemicals compatible with wetted materials.
Flow Magmeters	In general magmeter flow sensor doesn't need a specific maintenance. In case magmeter is used to measure a very dirty liquid it can be suggested to clean periodically the device with a cloth slightly dampened with water or a liquid compatible with the materials of the device and cloth. Dirty electrodes may cause measurement inaccuracy. Do not use abrasive materials to take maintenance.
Hot tap Insertion Flowmeters	The use of hot tap instrumentation is suggested for installation in pressurized pipes and when it is impossible to stop the flow rate into the pipeline. Hot tap version is available for magmeter, paddlewheel and turbine sensors. Previous advices are valid for these versions also. The sensors designed for hot tap installation are suitable also for pipes with a diameter larger than the maximum covered by traditional sensors (typically DN600/24").

Hot tap sensors have to be combined with hot tap fitting only.

IN LINE ROTOR AND OVAL GEAR FLOW SENSORS LIGHT AND COMPACT DESIGN FOR RELIABLE LOW FLOW MEASUREMENT

FLS ULF ULTRA LOW FLOW SENSOR

The compact Ultra Low Flow sensor type ULF is designed for use with every kind of aggressive and solid-free liquids.

The sensor can be fixed to flexible or rigid pipes via 1/4" GAS threaded process connections. The paddlewheel sensor produces a frequency output proportional to the flow velocity that can be easily transmitted and processed. The ULF sensor offers two different flow ranges starting from 1.5 or 6 l/h (0.0066 or 0.0264 gpm). The construction materials, POM or ECTFE (Halar®), provide high strength and chemical resistance.

APPLICATIONS

- Water treatment
- Chemical industry
- Pharmaceutical industry
- Dosing systemsLaboratory plants

- POM or ECTFE (Halar®) wetted parts
- Two flow ranges available:
- 1.5 100 l/h (0.0066 0.44 gpm)
- 6 250 l/h (0.0264 1.1 gpm)
- High chemical resistance
- Easy mounting

General

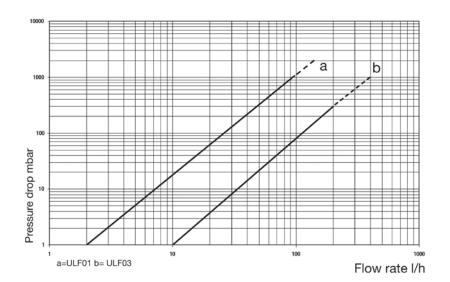
- Flow Rate Range:
- ULF01 version: 1.5 to 100 l/h (0.0066 to 0.44 gpm)
- ULF03 version: 6 to 250 l/h (0.0264 to 1.1 gpm)
- Linearity: ± 1 % of full scale
- Repeatability: ± 0.5 % of full scale
- Working Temperature: -10°C to 80°C (14°F to 176°F)
 Working Pressure: 5 bar (70 psi) max @ 22°C (72°F)
- Viscosity of fluid: 1 to 10 cST
- Enclosure: IP65
- · Wetted materials:

- POM version: sensor body: POM o-ring: FPM rotor: POM shaft: corepoint magnets: ceramic - EČTFE version: sensor Body: ECTFE(Halar®) o-ring: FPM or KALREZ rotor: ECTFE (Halar®) shaft: Sapphire bearings: Sapphire • Connections: 1/4" GAS male threaded • Cable length: 2 m (6.5 ft) standard

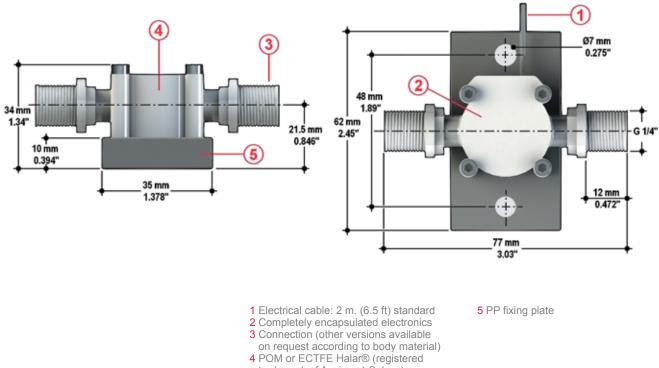
Specific for ULF01.H I ULF03.H

- Supply voltage: 5 to 24 VDC ±10%, regulated
- Supply current: < 15 mA @ 24 VDC
- Output signal: square wave
- K-factor:
- ULF01 version: 8431 Pulses/Liter (31569 Pulses/
- U.S. Gallon) in linear range from 8 to 100 l/h
- ULF03 version: 3394 Pulses/Liter (12846 Pulses/
- U.S. Gallon) in linear range from 15 to 250 l/h

Specific for ULF01.R I ULF03.R


- · Supply voltage: none
- Output signal: square wave
- Output type: Reed Contact
- K-factor:
- ULF01 version: 2108 Pulses/Liter (7978 Pulses/U.S.
- Gallon) in linear range from 8 to 100 l/h

- ULF03 version: 848 Pulses/Liter (3210 Pulses/U.S. Gallon) in linear range from 15 to 250 l/h


Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

Pressure Drop

DIMENSIONS

- trademark of Ausimont-Solvay) sensor body

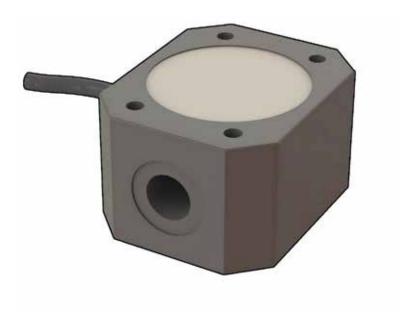
WIRING CONNECTIONS

ULFXX.H Sensor wiring connection

ULFXX.R Sensor wiring connection

			ULFOX.	X.X Ultra Low	Flow Senso	rs	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
ULF01.H.0	Hall	5 - 24 VDC	77mm	POM / FPM	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	170
ULF01.H.2	Hall	5 - 24 VDC	77mm	ECTFE / FPM	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	200
ULF01.H.3	Hall	5 - 24 VDC	77mm	ECTFE / KALREZ	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	200
ULF01.R.0	Reed	None	77mm	POM / FPM	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	170
ULF01.R.2	Reed	None	77mm	ECTFE / FPM	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	200
ULF01.R.3	Reed	None	77mm	ECTFE / KALREZ	IP65	1.5 to 100 l/h (0.0066 to 0.44 gpm)	200
ULF03.H.O	Hall	5 - 24 VDC	77mm	POM / FPM	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	170
ULF03.H.2	Hall	5 - 24 VDC	77mm	ECTFE / FPM	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	200
ULF03.H.3	Hall	5 - 24 VDC	77mm	ECTFE / KALREZ	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	200
ULF03.R.0	Reed	None	77mm	POM / FPM	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	170
ULF03.R.2	Reed	None	77mm	ECTFE / FPM	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	200
ULF03.R.3	Reed	None	77mm	ECTFE / KALREZ	IP65	6 to 250 l/h (0.0264 to 1.1 gpm)	200

FLS F3.80 **OVAL GEAR FLOW SENSOR**


The FLS Oval Gear Flow sensors FLS F3.80 has been designed following the main industrial application requirements: high mechanical resistance and reliable performances. These sensors are suitable to measure a wide range of liquid viscosities with a very high accuracy and repeatability.

The sensors can be fixed to flexible or rigid pipes via 1/4" GAS threaded process connections. The construction materials, ECTFE (Halar®) or PP or Stainless steel, provide high strength and chemical resistance.

APPLICATIONS

- Chemical industry
- Laboratory plants
- Dosing systems
- Pulsating flows measurement
- · High viscosity and not conductive fluid measurement
- Oil measurement

- Compact dimensionsEasy installation
- High chemical resistance
- · High viscosity fluids measurement
- Low pressure loss

General

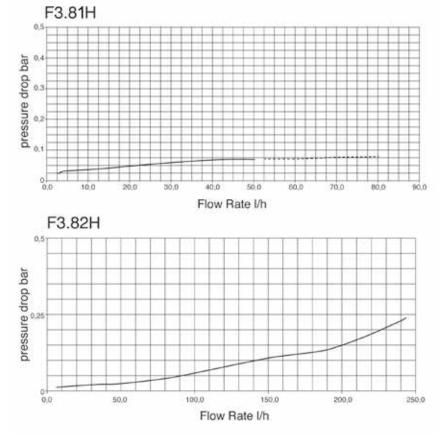
· Flow Rate Range: - F3.81.H: 10 to 100 l/h (0.044 up to 0.44 gpm) - F3.82.H: 25 to 150 l/h (0.11 up to 0.66 gpm) • Linearity: 1 % of full scale • Repeatability: < 0,3% of full scale • Working Temperature: -10°C to 60°C (14°F to 140°F) Max. Fluid Viscosity : 1000 cP (mPas) • Working Pressure: - PP body: 6 bar (87 psi) @ 25°C (77°F) 3 bar (44 psi) @ 60°C (140°F) - ECTFE body: 8 bar (116 psí) @ 25°C (77°F) 5 bar (73 psi) @ 60°C (140°F) - SS body: 8 bar (116 psi) @ 60°C (140°F) Enclosure: IP65 • Wetted Materials: - PP version: sensor body: PP o-ring: FPM gear: ECTFE (Halar) shaft: zircone - ECTFE version: sensor body: ECTFE (Halar) o-ring: FPM gear: ECTFE (Halar) shaft: zircone - Stainless Steel: sensor body: SS AISI 316L o-ring: FPM gear: ECTFE (Halar)

shaft: Stainless Steel

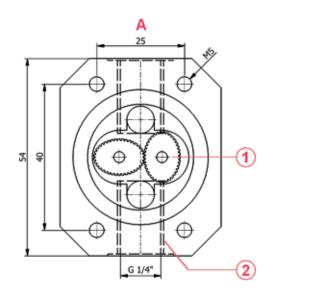
- · Connections: 1/4" GAS female
- · Cable length: 2 m (6.5 ft) standard

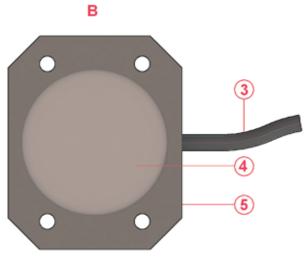
Specific for F3.81.H

- Supply voltage: 5 to 24 VDC ±10%, regulated
- Supply current: < 15 mA @ 24 VDC
- Output signal: square wave Cmos (NPN / PNP)
- K-factor = 5950 Pulses/Liter (22521 Pulses/U.S. Gallon)


Specific for F3.82.H

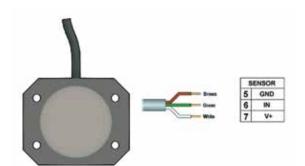
- Supply voltage: 5 to 24 VDC ±10%, regulated
- Supply current: < 15 mA @ 24 VDC
 Output signal: square wave Cmos (NPN / PNP) K-factor = 3400 Pulses/Liter (12869 Pulses/U.Ś.
- Gallon)


Standards & Approvals


- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

Pressure Drop

DIMENSIONS



ECTFE Halar[®] oval gears
 1/4" GAS threaded pipe connection
 Electrical cable: 2m. (6.5 ft) standard
 Completely encapsuled electronics

5 PP or ECTFE Halar[®] (registered trademark of Ausimont-Solvay) or SS sensor body

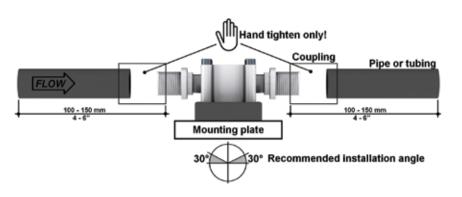
WIRING CONNECTIONS

F3.8X.H Sensor Connection

			F3.8X	.H Oval Gear Fl	ow Sensors	3	
Part No.	Version	Power supply	Length	Wetted materials	Enclosure	Flow Rate Range	Weight (gr.)
F3.81.H.01	Hall	5 - 24 VDC	54 mm	PP/ ECTFE/ FPM	IP65	10 to 100 l/h (0.044 to 0.44 gpm)	200
F3.81.H.02	Hall	5 - 24 VDC	54 mm	ECTFE/ ECTFE/ FPM	IP65	10 to 100 l/h (0.044 to 0.44 gpm)	300
F3.81.H.03	Hall	5 - 24 VDC	54 mm	AISI 316L SS/ ECTFE/ FPM	IP65	10 to 100 l/h (0.044 to 0.44 gpm)	800
F3.82.H.01	Hall	5 - 24 VDC	54 mm	PP/ ECTFE/ FPM	IP65	25 to 150 l/h (0.11 to 0.66 gpm)	200
F3.82.H.02	Hall	5 - 24 VDC	54 mm	ECTFE/ ECTFE/ FPM	IP65	25 to 150 l/h (0.11 to 0.66 gpm)	300
F3.82.H.03	Hall	5 - 24 VDC	54 mm	AISI 316L SS/ ECTFE/ FPM	IP65	25 to 150 l/h (0.11 to 0.66 gpm)	800

INSTALLATION & OPERATING GUIDELINES FOR IN LINE FLOW SENSORS

INSTALLATION GUIDELINES


In-line flow sensor can be installed in any position, both horizontally or vertically, although horizontal flow is preferred.

A non horizontal installation may cause a greater error in the lower part of the measurement range.

Anyway a positioning with a slightly tilt angle is suggested in case bubbles air could be present.

Install the sensor with the arrow pointing the direction of the flow. Always maximize distance between sensor and pump. Do not install the sensor immediately downstream of valves, elbows or any kind of obstacles: 150 mm of straight pipe are suggested before and after the sensor.

Consider pressure drop correlated to in-line flow sensors, especially in case you use them in a pipeline with a different diameter than $\frac{1}{4}$ (male for ULF family and female for F3.80 family). A large pressure drop across in line sensor can prematurely wear and/or damage bearings and/or seals.

OPERATING GUIDELINES

FLS can supply two different kinds of in-line sensors for low flow rates to cover different applications according to operating range and specific viscosity of liquid.

ULF flow sensor can be generally applied to measure liquids with a viscosity up to 10 cP while F3.80 oval gear flow sensor up to 1000cP. Both sensors have to be applied for the measurement of solid-free liquids as movement parts are present.

Abrasive or dirty liquids can potentially damage the sealing surfaces, the bearings and/or plugging of the sensor. A filter may be required to remove dirt.

Since these types of instruments are mainly used in dosing system, aggressive chemical solutions are very frequenty measured. Take care about following cases:

Chemicals could crystallize if left for a long time into sensor without flow so it's strongly advised to plan a cleaning of sensor in case it's requested a irregular use. For cleaning procedure can be used water as well other solutions compatible with wetted material and with measured chemical.
Chemicals could release gas so it's strongly advised to pay attention on

this issue especially during inoperative period.

Be sure that gas bubbles are removed from liquid flow streams when using in line sensors. For F3.80 family sensors, flow measurements taken with bubbles present will be higher than the true liquid flow because the bubble volumes will be measured as if they were a volume of liquid. For ULF family sensors, flow measurements taken with gas bubble is inaccurate as this presence produces a turbulence into sensor measurement chamber.

In case viscosity of the operating fluid is far from calibrated liquid (water) a recalibration of sensor itself could be necessary to fix the proper k-factor because the different amounts of slippage exhibited by different fluids can cause measurement error. Consider that increasing viscosity decreases slippage and increases the pressure drop across the in line sensor.

BULB AND FLAT PH/ORP ELECTRODES WITH EPOXY, PVCC OR GLASS BODY THE MOST APPROPRIATE ELECTRODE FOR EACH APPLICATION

FLS PH/ORP 200 **EPOXY BODY BULB ELECTRODES**

This FLS line of electrodes has been designed to provide a cost effective multipurpose solution for in line or submersion measurement of pH and ORP in a wide range of applications.

Single and double junction versions are available as well as models with or without quick disconnect top caps. These epoxy body electrodes can stand several applications thanks to the high chemical resistance of the material. A simple and reusable gland can be used for economic electrode in-line mounting while a $\frac{1}{2}$ or $\frac{3}{4}$ coupler with a pipe extension is enough for submersion mounting. A special version is dedicated to installation on FLS T fitting as well as to FLS clamp saddle adding just a nut.

APPLICATIONS

- Water treatment
- Neutralization systems
- Water quality monitoring
- Swimming Pools and spas
- Aquaculture
- Agriculture and fertilizing systems
- Process control

- Epoxy bodySingle or double junction technology
- Large gel reference volume
- · Easy and quick installation system
- Outline cable or BNC connection
- · Special versions on request
- Low cost fittings

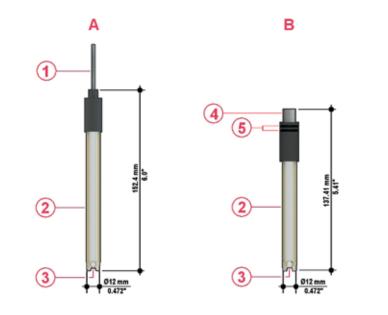
General

- Operating Range:
- pH Electrodes: 0 14 pH (0 12.3 pH without Na+ error)
- ORP Electrodes: ± 2000 mV
- Pipe Size Range: DN15 to DN100 (0.5" to 4")
- Zero voltage point new electrode performances: 7.00pH ± 0.2pH
- Efficiency new electrode performances: > 97% @ 25°C (77°F)
- Response time new electrode performances:
- pH: 2 sec for 95% of signal change
- ORP: application dependent
- •Reference:

- electrolyte:

solidified gel 3.5M KCl for single junction versions KCl-KNO3 for double junction versions •Process Connection:

- in-line installation with:
- threaded nipple $\frac{1}{2}$, $\frac{3}{4}$ or PG13,5 FLS installation fittings
- submersible installation
- Max Working pressure/ working temperature:
 7 bar (100 psi) @ 25°C (77°F)
 1 bar (14,5 psi) @ 65°C (149°F)

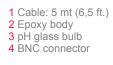

- · Wetted materials:
- body: epoxy
- o-ring junction: silicone
- junction: pelon
- sensing surface: glass membrane (pH) platinum (ORP)
- O-ring: Buna-N (PH222 CD, PH223 CD, ORP222 CD, ORP223 CD)

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- GOST R

			Spec	ific for PH-ORP	.200		
Model	Body	Junction material/type	Reference solution	Sensing surface	O-ring	Connection	Max working pressure @ working temperature
PH200 C	ероху	nylon/S.J.	3,5M KCI	glass membrane	silicone	5 mt. (16.5 ft.) Cable	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)
PH222 CD	ероху	nylon/D.J.	3,5M KCl/ Saťď KNO3	glass membrane	silicone	Twist-Lock (BNC)	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)
PH223 CD	ероху	nylon/D.J.	3,5M KCl/ Saťď KNO3	glass membrane	silicone	Twist-Lock (BNC)	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)
ORP200 C	ероху	nylon/S.J.	3,5M KCI	platinum	silicone	5 mt. (16.5 ft.) Cable	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)
ORP222 CD	ероху	nylon/D.J.	3,5M KCl/ Sat'd KNO3	platinum	silicone	Twist-Lock (BNC)	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)
ORP223 CD	ероху	nylon/D.J.	3,5M KCl/ Sat'd KNO3	platinum	silicone	Twist-Lock (BNC)	7 bar @ 25°C/ 1 bar @ 65°C (100 psi @ 77°F/ 14,5 psi @ 149°F)

DIMENSIONS



С

5 Buna-N O-rings 6 FPM O-rings

A PH200 C ORP200 C B PH222 CD ORP222 CD C PH223 CD ORP223 CD

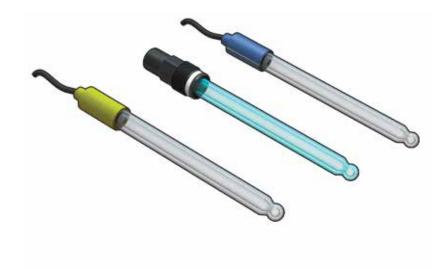
ORDERING DATA

	PH2	XX Bulb pH Electro	odes with epoxy bo	ody		
Part No.	Description /Name	Applications/ Operative Range	Cable (sold separately)	Connection	Installation	Weight (gr.)
PH200 C	Combination pH/Reference Electrode	0 - 14 pH (0 - 12.3 pH without Na+ error)	not required	5 mt. (16.5 ft.) Cable	EG50P, EG75P, MK150200, MIFV20X05, MIMC20X05	200
PH222 CD	Cartridge-type Double Junction Combination pH/ Reference Electrode	0 - 14 pH (0 - 12.3 pH without Na+ error)	CN 653, CN 653 TC1	Twist-Lock (BNC)	EG50P, EG75P, MIFV20X05, MIMC20X05	90
PH223 CD	Cartridge-type Double Junction Combination pH/ Reference Electrode for FLS fittings	0 - 14 pH (0 - 12.3 pH without Na+ error)	CN 653	Twist-Lock (BNC)	F3.SP2.4	100

	ORP2	XX Bulb ORP Elect	rodes with epoxy l	oody		
Part No.	Description /Name	Description /Name Applications/ Cable Operative Range (sold separately)		Connection	Installation	Weight (gr.)
ORP200 C	Combination REDOX/ Reference Electrode	± 2000 mV	not required	5 mt. (16.5 ft.) Cable	EG50P, EG75P, MK150200, MIFV20X05, MIMC20X05	200
ORP222 CD	Cartridge-type Double Junction Combination REDOX/Reference Electrode	± 2000 mV	CN 653	Twist-Lock (BNC)	EG50P, EG75P, MIFV20X05, MIMC20X05	90
ORP223 CD	Cartridge-type Double Junction Combination REDOX/Reference Electrode for FLS fittings	± 2000 mV	CN 653	Twist-Lock (BNC)	F3.SP2.4	100

86

FLS PH/ORP 400 glass body bulb electrodes



This FLS line of pH/ORP electrodes with glass body has been designed to fit a wide range of applications. Different type of junctions guarantee to find the proper solution in according with application needs: version with open junction for a fast response time, version with ceramic junction useful for high pressure application. Moreover it's available a version with a special barriered single junction which combine the typical short response time of standard single junction and the contamination protection of reference solution typical of double junction. A dedicated version for high temperature application is present in our range. Version with outline cable or with head connection (S7) are available also.

APPLICATIONS

- Water treatment
- Neutralization systems
- Water quality monitoring
- Process control
- Agriculture and fertilizing systems
- Plating plant and tannery
- Cooling towers and scrubbers

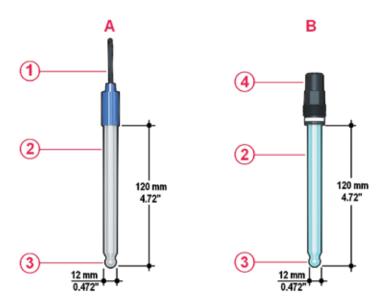
- Glass body
- Cost effective electrodes
- · Sensors suitable for extreme applications
- Installation easy and cheap
- Innovative reference solutions
- Cheap adaptors for installations
- Special versions available on request

General

• Operating range:

- pH electrodes: 0 - 14 pH (0 - 12.3 pH without Na+ error)

- ORP electrodes: ± 1000 mV
- Pipe size range: DN15 to DN100 (0.5" to 4")
- Zero point voltage point new electrode performances:
- 7pH ± 0.2pH
- Efficiency new electrode performances: > 97% @ 25°C (77°F)
- Response time new electrode performances:
- pH: 2 sec for 95% of signal change
- ORP: application dependent
- Reference:
- electrolyte: 3M KCI polymeric gel (different substrates in according with model)
- Process connection:
- in-line installation with: PG13,5


- Max working pressure/ working temperature:
 6 bar (90psi) @ 130°C (266°F) (PH435CD)
 10 bar (145psi) @ 80°C (175°F) (PH430CD)
 6 bar (90psi) @ 60°C (140°F) (PH425C, ORP425C)
- Wetted materials:
- body: glass
- junction: Open (PH435CD), Ceramic (PH430CD),
- Ópen (PH425C, ORP425C)
- sensing surface: glass membrane (pH); platinum (ORP)

Standards & Approvals

- Manufactured under ISO 9001 Manufactured under ISO 14001
- CE
- GOST R

			Spec	ific for PH-ORF	9.400		
Model	Body	Junction material/type	Reference solution	Sensing surface	O-ring	Connection	Max working pressure @ working temperature
PH435CD	glass	Open/Double junction	KCI 3M	Glass type H	Silicone	S7	6bar @ 130°C/ (85psi @ 266°F)
PH430CD	glass	Ceramic/Double junction	KCI 3M	Glass type H	Silicone	S7	10bar @ 80°C/ (145psi @ 176°F)
ORP430CD	glass	Ceramic/Double junction	KCI 3M	Glass type H	Silicone	S7	10bar @ 80°C/ (145psi @ 176°F)
PH425C	glass	Open/Single junction	KCI 3M	Glass type H	Silicone	5 mt. (16.5 ft.) Cable	6bar @ 60°C/ (87psi @ 140°F)
ORP425C	glass	Open/Single junction	KCI 3M	Glass type H	Silicone	5 mt. (16.5 ft.) Cable	6bar @ 60°C/ (87psi @ 140°F)

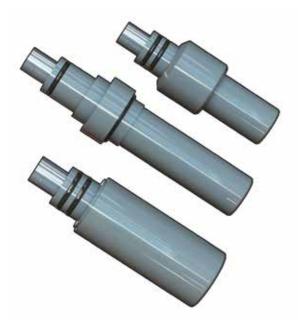
DIMENSIONS

1 Cable: 5mt 2 Glass body 3 pH glass bulb 4 S7

	PH4	4XX Bulb pH Electr	odes with glass bo	dy		
Part No.	Description /Name	Applications/ Operative Range	Cable (sold separately)	Connection	Installation	Weight (gr.)
PH425C	Combination pH/Reference electrode	0 - 14 pH (0 - 12.3 pH without Na+ error)	Not Required	5 mt (16.5 ft)	GEG135	200
PH430CD	Double Junction combination pH/Reference electrode	0 - 14 pH (0 - 12.3 pH without Na+ error)	CE5S7	S7	GEG135, GEG135SE	200
PH435CD	Double Junction combination pH/Reference electrode	0 - 14 pH (0 - 12.3 pH without Na+ error)	CE5S7	S7	GEG135, GEG135SE	200

	ORP4XX Bulb ORP Electrodes with glass body									
Part No.	Description /Name	Applications/ Operative Range	Cable (sold separately)	Connection	Installation	Weight (gr.)				
ORP425C	Combination ORP/ Reference electrode	± 1000 mV	Not Required	5 mt (16.5 ft)	GEG135	200				
ORP430CD	Double Junction combination pH/Reference electrode	± 1000 mV	CE5S7	S7	GEG135, GEG135SE	200				

FLS PH/ORP 600 **PVCC BODY FLAT SURFACE ELECTRODES**


This is the rugged version of the traditional flat electrodes with an improved selfcleaning effect. Installation and maintenance are easy due to the quick disconnect BNC connectors. Built into the electrode's body is a sealed. gel-filled double junction reference design. This design provides an extra barrier against reference side contamination and allows the electrodes to be used in severe applications prolonging electrode life. The pH-responsive flat glass surface is placed in the center of the measuring surface and surrounded by the flat porous plastic reference junction providing an excellent sample contact.

A wide range of installation accessories allows in line, submersion or hot tap installation.

APPLICATIONS

- Water & Wastewater treatment
- Pre-chlorination & de-chlorination
- Neutralization systems
- Water quality monitoring
- Ozone treatment
- Coolingtowers
- Boiler systems
- Bleach production Pulp bleaching
- Aquaculture
- · Fruit and vegetables washing
- Textile Dye Process

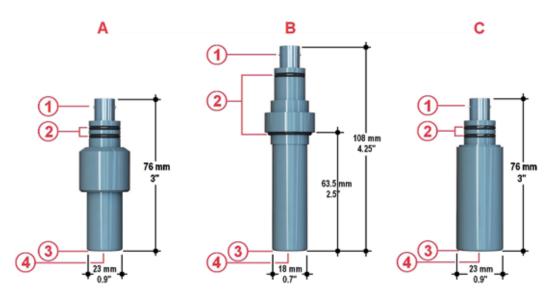
- pH and ORP versions
- Flat electrodes
- Double junction technology
- Large gel reference volume
- High protection from process contamination
- Easy and quick installation system
 BNC connector
- In line, submersion or hot tap installation
- Low cost fittings
- HF option (pH) for liquids with HF (max. 2%) inside
 DI option (pH) on request for pure water (<100uS)
- Other special versions on request

General

- Operating Range:
- pH Electrodes: 0 14 pH (0 12.3 pH without Na+ error)
- ORP Electrodes: ± 2000 mV
- Pipe Size Range: DN15 to DN100 (0.5" to 4")
- Zero voltage point new electrode performances: 7.00pH ± 0.2pH
- Efficiency new electrode performances: > 97% @ 25°C (77°É)
- Response time new electrode performances:
- pH: < 6 sec for 95% of signal change
- ORP: application dependent
- Reference
- type: sealed double junction
 electrolyte: Solidified Gel 3.5M KCl 0.1M KCl for LC electrode version / solidified gel KCl 3.5M
- secondary junction: Nylon filament
- wire: Ag/ÁgCl.
- Process Connection:
- In-line installation: threaded nipple $1\!\!\!/ _2$, $3\!\!/ _4$ "
- FLS installation fittings
- submersible installation
- hot-tap installation

- Max Working pressure/ working temperature:
 6,7bar@75°C (100psi@170°F)
 5,7bar@81°C (85psi@180°F)

- Wetted materials:
- body: CPVC (PVDF only on request)
- reference Junction: porous HDPE
- sensing surface: glass membrane (pH),platinum sealed in glass (ORP)
 O-ring: FPM (Viton)


Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE • GOST R

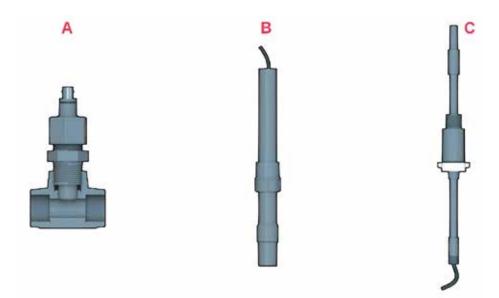
			Spec	ific for PH-ORP	.600		
Model	Body	Junction material/type	Reference solution	Sensing surface	O-ring	Connection	Max working pressure @ working temperature
PH660 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP660 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH650 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP650 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH655 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP655 CD	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)

			Spec	ific for PH-ORF	P.600		
Model	Body	Junction material/type	Reference solution	Sensing surface	O-ring	Connection	Max working pressure @ working temperature
PH660 CD HF	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH650 CD HF	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH655 CD HF	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH660 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP660 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH650 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP650 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH655 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
ORP655 DA	PVC-C	HDPE porous/ D.J.	3,5M KCI	platinum	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH660 CD LC	PVC-C	HDPE porous/ D.J.	0,1M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH650 CD LC	PVC-C	HDPE porous/ D.J.	0,1M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)
PH655 CD LC	PVC-C	HDPE porous/ D.J.	0,1M KCI	flat glass membrane	FPM	Twist-Lock (BNC)	6,7bar@75°C (100psi@170°F)

DIMENSIONS

A Submersible PH650, ORP650 B In-line PH660, ORP660 C Insertion/Hot-tap PH655, ORP655 1 BNC receptacle 2 Viton O-rings 3 Porous HDPE junction 4 pH glass or platinum

		ORP6XX CD Flat s	urface electrodes			
Part No.	Description /Name	Applications/ Operative Range	Cable (sold separately)	Connection	Installation	Weight (gr.)
ORP660CD	C-PVC Double Junction REDOX Combination Flat surface Electrode	-	CN653	Twist-Lock (BNC)	EG66P, MK660	100
ORP650CD	C-PVC Double Junction REDOX Combination Flat surface Electrode	-	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	100
ORP655CD	C-PVC Double Junction REDOX Combination Flat surface Electrode with pressurized filling gel	-	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	100
ORP660CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode	Presence of stray currents	CN653	Twist-Lock (BNC)	EG66P, MK660	200
ORP650CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode	Presence of stray currents	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	200
ORP655CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode with pressurized filling gel	Presence of stray currents	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	200


		PH6XX CD Flat su	Irface electrodes			
Part No.	Description /Name	Applications/ Operative Range	Cable (sold separately)	Connection	Installation	Weight (gr.)
PH660CD	C-PVC Double Junction pH Combination Flat surface Electrode	-	CN653	Twist-Lock (BNC)	EG66P, MK660	100
PH650CD	C-PVC Double Junction pH Combination Flat surface Electrode	-	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	100
PH655CD	C-PVC Double Junction pH Combination Flat surface Electrode with pressurized filling gel	-	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	100
PH660CDHF	C-PVC Double Junction pH Combination Flat surface Electrode	Liquids with HF (max 2%)	CN653	Twist-Lock (BNC)	EG66P, MK660	100
PH650CDHF	C-PVC Double Junction pH Combination Flat surface Electrode	Liquids with HF (max 2%)	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	100
PH655CDHF	C-PVC Double Junction pH Combination Flat surface Electrode with pressurized filling gel	Liquids with HF (max 2%)	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	100
PH660CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode	Presence of stray currents	CN653	Twist-Lock (BNC)	EG66P, MK660	200
PH650CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode	Presence of stray currents	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	200
PH655CDDA	Ground Loop interrupt Flat Surface pH/ORP combination Electrode with pressurized filling gel	Presence of stray currents	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	200
PH660CDLC	C-PVC Double Junction pH Combination Flat surface Electrode	Liquids with low conductivity (<100 ms)	CN653	Twist-Lock (BNC)	EG66P, MK660	100
PH650CDLC	C-PVC Double Junction pH Combination Flat surface Electrode	Liquids with low conductivity (<100 ms)	CN653/CN653 TC1	Twist-Lock (BNC)	MIFV20X05, MIMC20X05	100
PH655CDLC	C-PVC Double Junction pH Combination Flat surface Electrode with pressurized filling gel	Liquids with low conductivity (<100 ms)	CN653	Twist-Lock (BNC)	WT675, WT675 TC1	100

INSTALLATION & OPERATING GUIDELINES FOR PH/ORP ELECTRODES

INSTALLATION GUIDELINES

In line	In line installation is available for all pH/ORP sensor families. In line installation is suggested for application in a pipe range from DN15 up to DN100. For installation in small pipes pay attention that pH glass is not in contact with pipe surface. pH/ORP electrodes can be installed at 30° maximum from vertical position (except for hot tap version of 600 electrodes family) being sure that sensor is completely in contact with the measured solution. (Fig. A)
Submersible	Submersible installation is available for 200 electrodes family and for 600 electrodes family. Electrode should be installed near tank outlet away from addition areas in order to measure a representative solution. Sensor should be below the drain level to prevent the electrode from drying out (in case CN653 TC1 is applied, take care about positioning of temperature sensor pin). (Fig. B)
Hot-tap	Hot tap installation is available only for a special version of 600 electrodes family (PH655CD, ORP655CD) combined with WT675 or WT675 TC1 (in case temperature compensation is requested). Hot tap installation can be useful in case application needs a positioning of electrode different than standard 30° (sensor can work in all positions) as well for in line application where it can't be depressurized during maintenance. Hot tap installation can also solve problem to perform a in-line installation

Hot tap installation can also solve problem to perform a in-line installation on pipes bigger than DN100. (Fig. C)

OPERATING GUIDELINES

	=•
Storage	When pH readings are made infrequently, for example, several days or weeks apart, the electrode can be stored simply by replacing it in its soaker bottle/protection cap. If the storage solution in the soaker bottle is missed/dried, use 3M KCI or pH 4 buffer.
Care & Cleaning	Coating of an electrode's measuring surface can lead to erroneous readings including shortened span and slow response times. The type of coating determines the type of cleaning technique. Soft coatings can be removed by vigorous stirring, by use of a squirt bottle or, very carefully, by gently wiping with a soft and clean non-abrasive paper or cloth. Do not use any brush or abrasive cleaner on pH glass. Hard Coatings should be chemically removed. The chemical used to remove the coating should be the least harsh chemical that dissolves the coating in 1 or 2 minutes and does not attack the electrode's materials of construction. Abrading or sanding a pH electrode's surface should never be done. ORP/REDOX: electrode may be gently abraded by use of 600 grade wet silicon carbide paper, jeweler's rouge or very fine steel wool, but try to clean chemically before abrading with 600 grade paper.
Reconditioning	 When reconditioning is required due to electrode aging (see Operating Instruction), the following chemical treatments can be tried. They are presented in the order of the severity of attack on the pH glass and may not improve (and in some cases actually further deteriorate) electrode performance. NOTE: Use proper precautions when handling these hazardous chemicals. Ammonium bifluoride and HF (hydrofluoric acid) are extremely hazardous and should only be used by qualified personnel. 1. Immerse the electrode tip in 0.1 N HCl for 15 seconds, rinse in tap water and then immerse tip in 0.1 M NaOH for 15 seconds and rinse in tap water. Repeat this sequence three times and then recheck the electrode's performance. If performance has not been restored, try Step 2. 2. Immerse the tip in a 20% solution of NH4F-HF (ammonium bifluoride) for 2 to 3 minutes, rinse in tap water and recheck performance. If performance has not been restored try Step 3. 3. Immerse electrode tip in 5% HF for 10-15 seconds, rinse well in tap water, quickly rinse in 5N HCl, rinse well in tap water and recheck performance. If performance has not been restored, it is time to get another pH electrode. ORP/REDOX: clean metal surfaces with a mildly abrasive medium, e.g. toothpaste of very fine scouring powder.
Calibration	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>

POTENTIOMETRIC AND INDUCTIVE CONDUCTIVITY SENSORS A WIDE RANGE OF MEASUREMENT OPTIONS FROM ULTRA PURE WATER TO DIRTY LIQUIDS

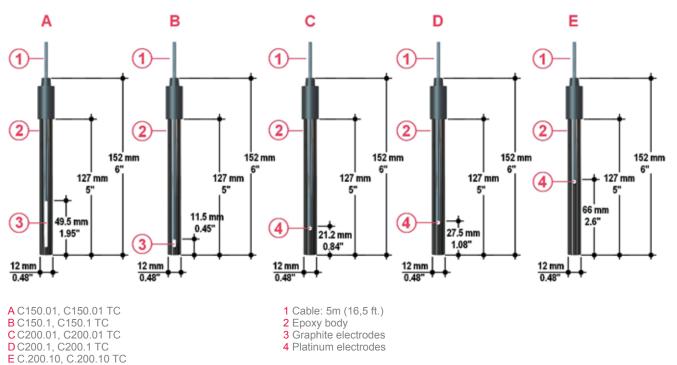
FLS C150-200 **GRAPHITE OR PLATINUM CONDUCTIVITY** SENSORS

The FLS C150-200 conductivity sensors feature graphite or high resolution platinum ring technology. Durable epoxy body construction provides rugged and dependable sensors. Due to platinum electrodes and ATC elements these sensors provide accurate and high resolution measurement. They can be used for both laboratory and industrial applications. Sensor electrodes are well protected so cell constant can't be easily damaged by solids presence. Three cell constants are available depending on the operating range required. A simple and reusable gland can be used for economic electrode in-line mounting while a $\frac{1}{2}$ or $\frac{3}{4}$ coupler with a pipe extension is enough for submersion mounting. A specific kit allows to mount these probes on FLS T fitting as well as to FLS clamp saddle.

APPLICATIONS

- Chemical concentrations
- Foods industry
- Steam generation
- Metal finishing and mining • Textile industry
- Pulp and paper Water treatment
- Reverse osmosis
- Softener regeneration
- De-ionization
- Distillation
- Aquaculture
- Agriculture and fertilizing systems

- Graphite or Platinum measuring surfaces
- Suitable for laboratory, industrial or portable applications
- In line and submersion installation
- Available with or without ATC (temperature sensor)
- Cell constant choices of 0.1 and 10


General

- Operating Range:
- C150.01, C150.01 TC, C200.01, C200.01 TC: 0.1 μS to 2000 μS (10 MΩ to 500 Ω)
- C150.1, C150.1 TC, C200.1, C200.1 TC: 1 μS to 20000 µS
- C200.10, C200.10 TC: 10 µS to 200000 µS
- Temp. compensation device (for TC models): Pt100
- Cable length: 5 meter (16 ft.)
- Max. distance electrode-controller (without signal conditioning): 20 meter (66 ft)
- Process Connection:
- in-line installation with:
- threaded nipple 1/2" or 3/4' FLS installation fittings
- submersible installation
- Working temperature: 0°C to 70°C (32°F to 158°F)
 Max. Working Pressure: 7 bar (100 psi)
- Wetted materials:
- body: epoxy
- measuring surface: graphite (C150 version) or platinum (C200 version)

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

DIMENSIONS

CONDUCTIVITY SENSORS

C150 Epoxy body Conductivity Sensors						
Part No.	Description /Name	Applications/ Operative Range	Cell Constant	Connection	Installation	Weight (gr.)
C150.01	Graphite Conductivity Sensor	0.1 µS to 2000 µS	0,1 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C150.1	Graphite Conductivity Sensor	1 μS to 20000 μS	1,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05, MK150200	200
C150.01 TC	Graphite Conductivity Sensor with Temperature Sensor included	0.1 μS to 2000 μS	0,1 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C150.1 TC	Graphite Conductivity Sensor with Temperature Sensor included	1 μS to 20000 μS	1,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05, MK150200	200

C200 Epoxy body Conductivity Sensors						
Part No.	Description /Name	Applications/ Operative Range	Cell Constant	Connection	Installation	Weight (gr.)
C200.01	Platinum Conductivity Sensor	0.1 µS to 2000 µS	0,1 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C200.1	Platinum Conductivity Sensor	1 µS to 20000 µS	1,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C200.10	Platinum Conductivity Sensor	10 μS to 200000 μS	10,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C200.01 TC	Platinum Conductivity Sensor with Temperature Sensor included	0.1 µS to 2000 µS	0,1 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C200.1 TC	Platinum Conductivity Sensor with Temperature Sensor included	1 µS to 20000 µS	1,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200
C200.10 TC	Platinum Conductivity Sensor with Temperature Sensor included	10 μS to 200000 μS	10,0 Cell	5 m (16,5 ft.)	EG50P, EG75P, MIFV20X05, MIMC20X05	200

FLS C100-300 stainless steel conductivity sensors

The FLS conductivity sensors with stainless steel electrodes (C100 series) are designed for agriculture application and for light industrial application obviously where sample conditions allow a steel using (water treatment, foods industry and others). This type of sensors are characterized by a considerable ratio performance/price. They can also be equipped with ATC to improve measurement accuracy. Moreover a wide number of cell constants grants to choose the best item for specific application. C300 serie has been designed for ultrapure water monitoring (cell constant 0,01) and for waste water application (cell constant 10). C300 sensors are completely made in SS ensuring a wide range of applications.

APPLICATIONS

- Agriculture and fertilizing system
- Water treatment
- Foods industry
- Aquaculture
- Ultrapure water application: production and use

- Stainless steel measuring surfaces
- Considerable ratio performance/price
- Available with or without ATC
- Wide range of cell constant
- Rugged sensor body in PP (C100)
- Sensor in SS completely (C300)

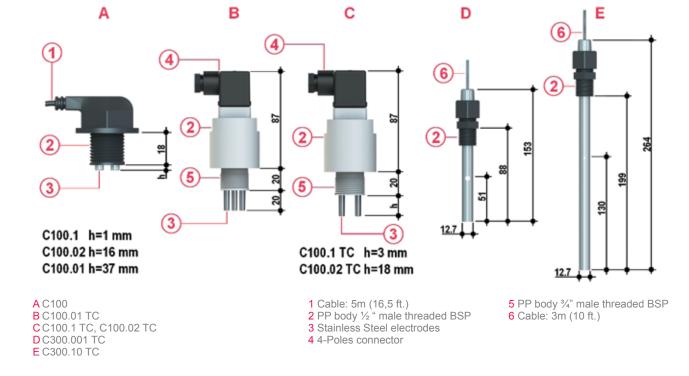
General

- · Operating range:
- C300.001 TC: 0,055 μS to 200 μS (18,2 MΩ to 5 KΩ) - C100.01, C100.01 TC: 0.1 μS to 2000 μS (10 MΩ to
- 500 Ω)
- C100.02, C100.02 TC: 0.2 μS to 4000 μS C100.1, C100.1 TC: 1 μS to 20000 μS C300.10 TC: 10 μS to 200000 μS

- Temperature compensation device (for TC models):
- Pt 100 (C100TC), Pt1000 (C300TC)
- · Cable length:
- C100.01, C100.02, C100.1: 5m bipolar cable of 5mm section
- C100.01 TC, C100.02 TC, C100.1 TC: no cable
- available
- C300 TC: 3m
- Process connection: - C100.01, C100.02, C100.1: 1/2" male BSP
- C100.01 TC, C100.02 TC, C100.1 TC: 3/4" male BSP
- C300: 3/4" male BSP fitting
- Max. Working Temperature:
- C100.01, C100.02, C100.1: 80°C (176°F) C100.01 TC, C100.02 TC, C100.1 TC : 80°C (176°F) C300TC: 100°C (PP fitting), 120°C (SS fitting) Max. Working Pressure:

- C100.01, C100.02, C100.1, C100.01 TC, C100.02
- TC, C100.1 TC: 6 bar (85 psi)
- C300 TC: 7 bar (PP fitting), 13 bar (SS fitting)
- Wetted materials:
- body:

C100.01, C100.02, C100.1, C100.01 TC, C100.02 TC,


- C100.1 TC: PP;
- C300 TC: SS 316

DIMENSIONS

- measuring surface: stainless steel AISI 316

Standards & Approvals

- Manufactured under ISO 9001 Manufactured under ISO 14001
- CE
- RoHS Compliant
- GOST R

	C100 Stainless Steel Electrodes Conductivity Sensors						
Part No.	Description /Name	Applications/ Operative Range	Cell Constant	Connection	Installation	Weight (gr.)	
C100.01	PP body sensor with SS Conductivity Electrode	0.1 µS to 2000 µS	0,1	5 m	½" male BSP (parallel threaded)	350	
C100.01 TC	PP body sensor with SS Conductivity Electrode and Temperature Sensor included	0.1 µS to 2000 µS	0,1	4 poles connector	³⁄₄" male BSP (parallel threaded)	350	
C100.02	PP body sensor with SS Conductivity Electrode	0.2 μS to 4000 μS	0,2	5 m	½" male BSP (parallel threaded)	350	
C100.02 TC	PP body sensor with SS Conductivity Electrode and Temperature Sensor included	0.2 µS to 4000 µS	0,2	4 poles connector	¾" male BSP (parallel threaded)	350	
C100.1	PP body sensor with SS Conductivity Electrode	1 μS to 20000 μS	1	5 m	½" male BSP (parallel threaded)	350	
C100.1 TC	PP body sensor with SS Conductivity Electrode and Temperature Sensor included	1 μS to 20000 μS	1	4 poles connector	³⁄₄" male BSP (parallel threaded)	350	

C300 Stainless Steel Electrodes Conductivity Sensors						
Part No.	Description /Name	Applications/ Operative Range	Cell Constant	Connection	Installation	Weight (gr.)
C300.001 TC	Body sensor and conductivity electrodes in SS	0,055 μS to 200 μS	0,01	3 m	EG50P, EG75P, EG12 SS	150
C300.10 TC	Body sensor and conductivity electrodes in SS	10 μS to 200000 μS	10	3 m	EG50P, EG75P, EG12 SS	150

FLS C6.30 INDUCTIVE CONDUCTIVITY TRANSMITTER

FLS C3.30 is a family of conductivity transmitters which are made by a 4-20mA output device (two wire technology) integrated onto an inductive conductivity sensor. This type of measurement technology allows a broad range of applications especially to measure high values of conductivity (till 1000 millisiemens) in aggressive fluids (PVCC is the only wetted material). As no electrodes are directly in contact with liquid, a reliable and stable measurement is guaranteed for a long operating time. A proper automatic temperature compensation is granted by a Pt100 integrated into instrument body. The isolated 4-20mA output is perfect for direct connections to PLCs or data loggers without any extra interfaces. Transmitter as well as temperature sensor are supplied already calibrated.

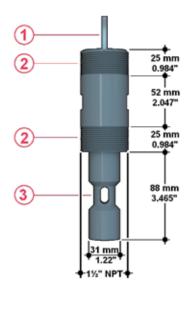
APPLICATIONS

- Water treatment
- Waste water treatment
- Cooling towers
- Scrubber systems
- Metal finishingn Coating and corrosion fluid measurement

- Corrosion & coating resistant
- Compact transmitter
- No calibration required
- Easy installation
- Pt100 sensor integrated
- Suitable for submersible installation

General

- Body Material: CPVC
 Body length: 207mm
 Enclosure: IP68


- Power supply: 10-30 VDC regulated
 Max Working pressure/Working
- Temperature:

- 10bar (145psi) @ 25°C (77°F)
 6bar (87psi) @ 50°C (122°F)
 Process connection: 1 ½" male NPT

Standards & Approvals

- Manufactured under ISO 9001
- Manufactured under ISO 14001
- CE
- RoHS Compliant
 GOST R

DIMENSIONS

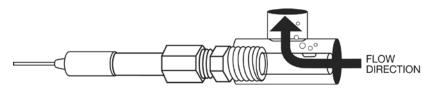
1 Cable:3 mt (9 ft.) 2 1 1/2" male NPT 3 C-PVC coating

ORDERING DATA

	C6	.30 Inductive Cond	ductivity Transmitte	er		
Part No.	Description /Name	Applications/ Operative Range	Cell Constant	Connection	Installation	Weight (gr.)
C6.30.01	PVC-C Inductive Conductivity Transmitter with Temperature Sensor included	0-10 mS	-	3 mt	1 1/2" NPT male threaded	550
C6.30.02	PVC-C Inductive Conductivity Transmitter with Temperature Sensor included	0-100 mS	-	3 mt	1 1/2" NPT male threaded	550
C6.30.03	PVC-C Inductive Conductivity Transmitter with Temperature Sensor included	0-1000 mS	-	3 mt	1 1/2" NPT male threaded	550

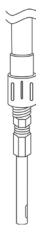
INSTALLATION & OPERATING GUIDELINES FOR CONDUCTIVITY SENSORS

INSTALLATION GUIDELINES


	-		-
n	L	n	Δ
			-

In line installation is available for all conductivity sensor families. It's possible to perform 2 different types of in-line installation: vertically on a straight pipeline using a proper T fitting or through the side of a T fitting. The first installation should be performed mounting upside down (or at least at 45°) as this condition help to prevent air entrapment.

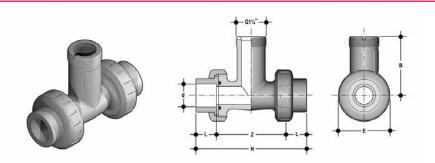
The second installation type is preferred since this configuration reduces the probability of entrapped air bubbles and provides the best continous sampling of the fluid.


Pay attention that the electrodes of the sensor are completely dipped into a representative solution (not in a dead volume).

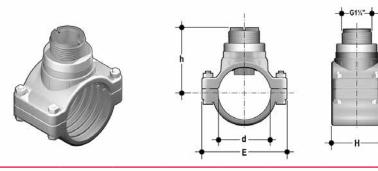
Conductivity sensors can work properly in any direction.

Submersible

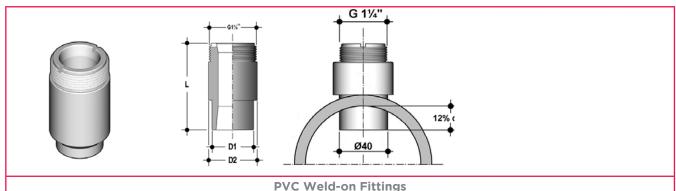
Submersible installation is available for C150/C200 sensor family. Sensor should be installed near tank outlet away from addition areas in order to measure a representative solution.

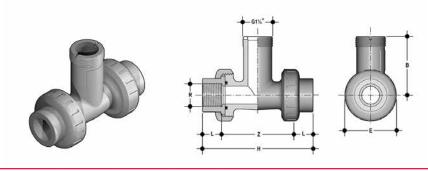


OPERATING GUIDELINES

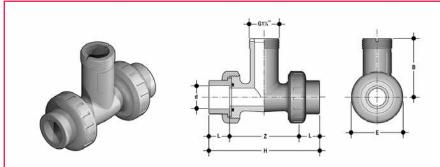

Care & Cleaning All conductivity sensors can be cleaned with a gentle detergent. C150/C200 sensor families can be cleaned using a 5% HCl solution also. Do not sand or abrade the electrodes surface as abrasion changes the surface area and will cause erroneous readings. Anyway every solution compatible with electrodes material and sensor body material can be used. Calibration Calibration is fundamental to achieve a good accuracy and a reliable measurement. The frequency of calibration is a function of the sensor and the solutions that conductivity sensor has to measure. Moreover this frequency is correlated to how much critical the measurement is. Pay attention that air bubbles are not present during calibration since such condition could cause a erroneous readings. As temperature affects strongly conductivity measurement, pay attention on: • reference temperature (it should be the same for monitor and for calibration solution) • temperature compensation: if it's activated User should use conductivity value of calibration solution at reference temperature; if it's not activated User should refer to conductivity value of calibration solution at calibration solution temperature. • temperature compensation factor: check if it's proper for calibration/ measured solution. 110

INSTALLATION FITTINGS FOR FLOW SENSORS AND ANALYTICAL ELECTRODES

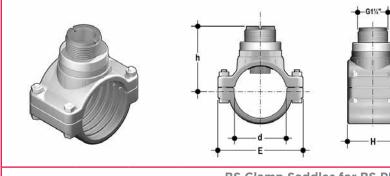



	ISO Metric PVC Tee Fittings for ISO SDR 21 pipes (female ends for solvent welding)														
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)				
TFIV20B	15	20	EPDM	UPVC	113	81	16	73	53	LO	F & A				
TFIV25B	20	25	EPDM	UPVC	126	88	19	8	62	LO	F & A				
TFIV32B	25	32	EPDM	UPVC	139.5	95.5	22	81	71	LO	F & A				
TFIV40B	32	40	EPDM	UPVC	170	118	26	84	84	LO	F & A				
TFIV50B	40	50	EPDM	UPVC	199	137	31	82.5	98	LO	F&A				
TFIV20D	15	20	FPM	UPVC	113	81	16	73	53	LO	F & A				
TFIV25D	20	25	FPM	UPVC	126	88	19	8	62	LO	F & A				
TFIV32D	25	32	FPM	UPVC	139.5	95.5	22	81	71	LO	F & A				
TFIV40D	32	40	FPM	UPVC	170	118	26	84	84	LO	F & A				
TFIV50D	40	50	FPM	UPVC	199	137	31	82.5	98	LO	F & A				

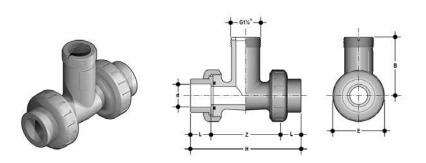
	DN/								Drilling	Flow	Suitable
Part No.	Size	d/R	O-ring	Body	Insert	н	E	h	Hole	Sensor Lenght	for (*)
SVIC063BVC	50	63	EPDM	UPVC	CPVC	105	116	86.7	35	LO	F & A
SVIC075BVC	65	75	EPDM	UPVC	CPVC	105	134	90.8	35	L0	F & A
SVIC090BVC	80	90	EPDM	UPVC	CPVC	105	152	95.9	40	L0	F & A
SVIC110BVC	100	110	EPDM	UPVC	CPVC	105	176	102.8	40	L0	F & A
SVIC125BVC	110	125	EPDM	UPVC	CPVC	112	190	137.9	40	L1	F
SVIC140BVC	125	140	EPDM	UPVC	CPVC	114	214	143.1	40	L1	F
SVIC160BVC	150	160	EPDM	UPVC	CPVC	120	238	149.9	40	L1	F
SVIC200BVC	180	200	EPDM	UPVC	CPVC	133	300	163.7	40	L1	F
SVIC225BVC	200	225	EPDM	UPVC	CPVC	125	333	172.3	40	L1	F
SVIC063DVC	50	63	FPM	UPVC	CPVC	105	116	86.7	35	L0	F & A
SVIC075DVC	65	75	FPM	UPVC	CPVC	105	134	90.8	35	L0	F & A
SVIC090DVC	80	90	FPM	UPVC	CPVC	105	152	95.9	40	L0	F & A
SVIC110DVC	100	110	FPM	UPVC	CPVC	105	176	102.8	40	L0	F & A
SVIC125DVC	110	125	FPM	UPVC	CPVC	112	190	137.9	40	L1	F
SVIC140DVC	125	140	FPM	UPVC	CPVC	114	214	143.1	40	L1	F
SVIC160DVC	150	160	FPM	UPVC	CPVC	120	238	149.9	40	L1	F
SVIC200DVC	180	200	FPM	UPVC	CPVC	133	300	163.7	40	L1	F
SVIC225DVC	200	225	FPM	UPVC	CPVC	125	333	172.3	40	L1	F
SMIC250IVC*	225	250	NBR	PP	CPVC	79	324	203.5	40	L0	F
SMIC280IVC*	250	280	NBR	PP	CPVC	88	385	212.2	40	L1	F
SMIC315IVC*	280	315	NBR	PP	CPVC	88	385	220.1	40	L1	F

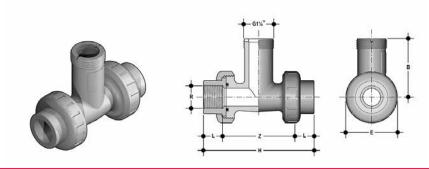


				FVCV		ttings				
Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
WAIV063	50	63	1 1/4"	UPVC	68.5	40	50	40	LO	F & A
WAIV075	65	75	1 1/4"	UPVC	68.5	40	50	40	LO	F & A
WAIV090	80	90	1 1/4"	UPVC	68.5	40	50	40	LO	F&A
WAIV110	100	110	1 1/4"	UPVC	68.5	40	50	40	LO	F&A
WAIV125	110	125	1 1/4"	UPVC	68.5	40	50	40	LO	F
WAIV140	125	140	1 1/4"	UPVC	68.5	40	50	40	LO	F
WAIV160	150	160	1 1/4"	UPVC	68.5	40	50	40	LO	F
WAIV200	180	200	1 1/4"	UPVC	68.5	40	50	40	LO	F
WAIV225	200	225	1 1/4"	UPVC	68.5	40	50	40	LO	F
WAIV250	225	250	1 1/4"	UPVC	98.5	40	50	40	L1	F
WAIV280	250	280	1 1/4"	UPVC	98.5	40	50	40	L1	F
WAIV315	280	315	1 1/4"	UPVC	98.5	40	50	40	L1	F

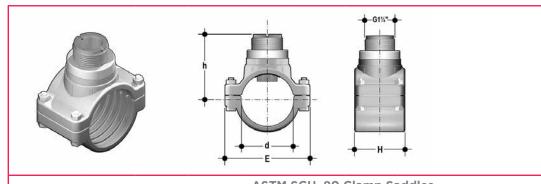


BSP Female Threaded PVC Tee Fittings for for BS PN12 pipes (parallel threaded female ends)

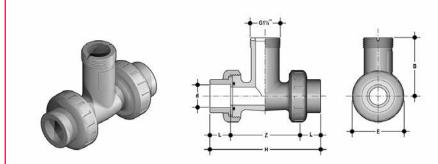

Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	В	E	Flow Sensor Lenght	Suitable for (*)
TFFV20B	15	1/2"	EPDM	UPVC	118.5	88.5	15	73	53	LO	F & A
TFFV25B	20	3/4"	EPDM	UPVC	127.5	94.9	16.3	80	62	LO	F & A
TFFV32B	25	1"	EPDM	UPVC	146	107.8	19.1	81	71	LO	F & A
TFFV40B	32	1 1/4"	EPDM	UPVC	177	134.2	21.4	84	84	LO	F & A
TFFV50B	40	1 1/2"	EPDM	UPVC	191	148.2	21.4	82.5	98	LO	F & A
TFFV20D	15	1/2"	FPM	UPVC	118.5	88.5	15	73	53	LO	F & A
TFFV25D	20	3/4"	FPM	UPVC	127.5	94.9	16.3	80	62	LO	F & A
TFFV32D	25	1"	FPM	UPVC	146	107.8	19.1	81	71	LO	F & A
TFFV40D	32	1 1/4"	FPM	UPVC	177	134.2	21.4	84	84	LO	F & A
TFFV50D	40	1 1/2"	FPM	UPVC	191	148.2	21.4	82.5	98	LO	F & A


1	BS Solvent Welding PVC Tee Fittings for BS PN12 pipes (female ends for solvent welding)													
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)			
TFLV20B	15	1/2"	EPDM	UPVC	113	8	16.5	73	53	L0	F & A			
TFLV25B	20	3/4"	EPDM	UPVC	126	88	19	80	62	LO	F & A			
TFLV32B	25	1"	EPDM	UPVC	139.5	94.5	22.5	81	71	LO	F & A			
TFLV40B	32	1 1/4"	EPDM	UPVC	17	118	26	84	84	LO	F & A			
TFLV50B	40	1 1/2"	EPDM	UPVC	199	139	30	82.5	98	LO	F & A			
TFLV20D	15	1/2"	FPM	UPVC	113	8	16.5	73	53	LO	F & A			
TFLV25D	20	3/4"	FPM	UPVC	126	88	19	80	62	LO	F&A			
TFLV32D	25	1"	FPM	UPVC	139.5	94.5	22.5	81	71	LO	F&A			
TFLV40D	32	1 1/4"	FPM	UPVC	17	118	26	84	84	LO	F & A			
TFLV50D	40	1 1/2"	FPM	UPVC	199	139	30	82.5	98	LO	F & A			

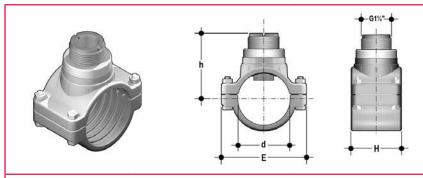
			В	S Clamp	Saddles	for BS P	N12 pipe	S			
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	Е	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SVLC2.0BVM	50	2"	EPDM	UPVC	CPVC	105	116	85.3	35	L0	F & A
SVLC3.0BVM	80	3"	EPDM	UPVC	CPVC	105	152	95.0	40	L0	F & A
SVLC4.0BVM	100	4"	EPDM	UPVC	CPVC	105	176	103.5	40	L0	F & A
SVLC6.0BVM	150	6"	EPDM	UPVC	CPVC	120	238	151.7	40	L1	F
SVLC8.0BVM	200	8"	EPDM	UPVC	CPVC	125	333	169.8	40	L1	F
SVLC2.0DVM	50	2"	FPM	UPVC	CPVC	105	116	85.3	35	L0	F & A
SVLC3.0DVM	80	3"	FPM	UPVC	CPVC	105	152	95.0	40	L0	F & A
SVLC4.0DVM	100	4"	FPM	UPVC	CPVC	105	176	103.5	40	L0	F & A
SVLC6.0DVM	150	6"	FPM	UPVC	CPVC	120	238	151.7	40	L1	F
SVLC8.0DVM	200	8"	FPM	UPVC	CPVC	125	333	169.8	40	L1	F



A	ASTM SCH. 80 PVC Tee Fittings for ASTM SCH. 80 pipes (female ends for solvent welding)													
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	В	E	Flow Sensor Lenght	Suitable for (*)			
TFAV20B	15	1/2"	EPDM	UPVC	4.92"	3.15"	0.89"	2.87"	2.09"	LO	F&A			
TFAV25B	20	3/4"	EPDM	UPVC	5.51"	3.50"	1.00"	3.15"	2.44"	LO	F&A			
TFAV32B	25	1"	EPDM	UPVC	6.04"	3.78"	1.13"	3.19"	2.80"	LO	F&A			
TFAV40B	32	1 1/4"	EPDM	UPVC	7.34"	4.80"	1.26"	3.31"	3.31"	LO	F & A			
TFAV50B	40	1 1/2"	EPDM	UPVC	8.15"	5.39"	1.38"	3.25"	3.86"	LO	F & A			
TFAV20D	15	1/2"	FPM	UPVC	4.92"	3.15"	0.89"	2.87"	2.09"	LO	F&A			
TFAV25D	20	3/4"	FPM	UPVC	5.51"	3.50"	1.00"	3.15"	2.44"	LO	F & A			
TFAV32D	25	1"	FPM	UPVC	6.04"	3.78"	1.13"	3.19"	2.80"	LO	F&A			
TFAV40D	32	1 1/4"	FPM	UPVC	7.34"	4.80"	1.26"	3.31"	3.31"	LO	F&A			
TFAV50D	40	1 1/2"	FPM	UPVC	8.15"	5.39"	1.38"	3.25"	3.86"	LO	F & A			

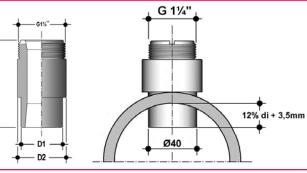

NPT Female Threaded PVC Tee Fittings for ASTM SCH. 80 pipes (NPT threaded female ends)

Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)
TFNV20B	15	1/2"	EPDM	UPVC	4.67"	3.26"	0.70"	2.87"	2.09"	LO	F & A
TFNV25B	20	3/4"	EPDM	UPVC	5.02"	3.60"	0.71"	3.15"	2.44"	LO	F & A
TFNV32B	25	1"	EPDM	UPVC	5.75"	3.97"	0.89"	3.19"	2.80"	LO	F&A
TFNV40B	32	1 1/4"	EPDM	UPVC	6.97"	5.12"	0.93"	3.31"	3.31"	LO	F&A
TFNV50B	40	1 1/2"	EPDM	UPVC	7.52"	5.28"	1.12"	3.25"	3.86"	LO	F & A
TFNV20D	15	1/2"	FPM	UPVC	4.67"	3.26"	0.70"	2.87"	2.09"	LO	F&A
TFNV25D	20	3/4"	FPM	UPVC	5.02"	3.60"	0.71"	3.15"	2.44"	LO	F & A
TFNV32D	25	1"	FPM	UPVC	5.75"	3.97"	0.89"	3.19"	2.80"	LO	F & A
TFNV40D	32	1 1/4"	FPM	UPVC	6.97"	5.12"	0.93"	3.31"	3.31"	LO	F & A
TFNV50D	40	1 1/2"	FPM	UPVC	7.52"	5.28"	1.12"	3.25"	3.86"	LO	F & A


				ASTM	SCH. 80	Clamp Sa	addles				
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SVAC2.0BVM	50	2"	EPDM	UPVC	CPVC	4.13"	4.57"	3.3"	1.38"	LO	F & A
SVAC2.5BVM	65	2 1/2"	EPDM	UPVC	CPVC	4.13"	5.28"	3.4"	1.38"	LO	F & A
SVAC3.0BVM	80	3"	EPDM	UPVC	CPVC	4.13"	5.98"	3.6"	1.57"	LO	F & A
SVAC4.0BVM	100	4"	EPDM	UPVC	CPVC	4.13"	6.93"	4.0"	1.57"	LO	F & A
SVAC5.0BVM	125	5"	EPDM	UPVC	CPVC	4.49"	8.43"	5.6"	1.57"	L1	F
SVAC6.0BVM	150	6"	EPDM	UPVC	CPVC	4.72"	9.37"	5.9"	1.57"	L1	F
SVAC8.0BVM	200	8"	EPDM	UPVC	CPVC	4.92"	13.11"	6.6"	1.57"	L1	F
SVAC2.0DVM	50	2"	FPM	UPVC	CPVC	4.13"	4.57"	3.3"	1.38"	LO	F & A
SVAC2.5DVM	65	2 1/2"	FPM	UPVC	CPVC	4.13"	5.28"	3.4"	1.38"	LO	F & A
SVAC3.0DVM	80	3"	FPM	UPVC	CPVC	4.13"	5.98"	3.6"	1.57"	LO	F & A
SVAC4.0DVM	100	4"	FPM	UPVC	CPVC	4.13"	6.93"	4.0"	1.57"	LO	F & A
SVAC5.0DVM	125	5"	FPM	UPVC	CPVC	4.49"	8.43"	5.6"	1.57"	L1	F
SVAC6.0DVM	150	6"	FPM	UPVC	CPVC	4.72"	9.37"	5.9"	1.57"	L1	F
SVAC8.0DVM	200	8"	FPM	UPVC	CPVC	4.92"	13.11"	6.6"	1.57"	L1	F

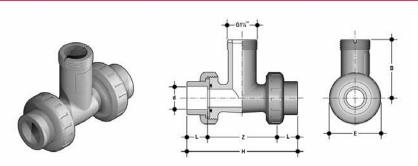
INSTALLATION ON PVCC PIPES

	ISO Metric CPVC Tee Fittings (female ends for solvent welding)													
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	Е	Flow Sensor Lenght	Suitable for (*)			
TFIC20B	15	20	EPDM	CPVC	113	81	16	73	53	LO	F & A			
TFIC25B	20	25	EPDM	CPVC	126	88	19	80	62	LO	F & A			
TFIC32B	25	32	EPDM	CPVC	139.5	95.5	22	81	71	LO	F & A			
TFIC40B	32	40	EPDM	CPVC	170	118	26	84	84	LO	F & A			
TFIC50B	40	50	EPDM	CPVC	199	137	31	82.5	98	LO	F & A			
TFIC20D	15	20	FPM	CPVC	113	81	16	73	53	LO	F & A			
TFIC25D	20	25	FPM	CPVC	126	88	19	80	62	LO	F & A			
TFIC32D	25	32	FPM	CPVC	139.5	95.5	22	81	71	LO	F & A			
TFIC40D	32	40	FPM	CPVC	170	118	26	84	84	LO	F & A			
TFIC50D	40	50	FPM	CPVC	199	137	31	82.5	98	LO	F & A			

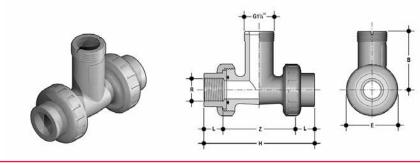


ISO Metric Clamp Saddles for ISO SDR 21 pipes (PN10 up to d 90mm, PN12,5 from d 110mm)												
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)	
SVIC063BVC	50	63	EPDM	UPVC	CPVC	105	116	86.7	35	LO	F & A	
SVIC075BVC	65	75	EPDM	UPVC	CPVC	105	134	90.8	35	LO	F & A	
SVIC090BVC	80	90	EPDM	UPVC	CPVC	105	152	95.9	40	LO	F & A	
SVIC110BVC	100	110	EPDM	UPVC	CPVC	105	176	102.8	40	LO	F & A	
SVIC125BVC	110	125	EPDM	UPVC	CPVC	112	190	137.9	40	L1	F	
SVIC140BVC	125	140	EPDM	UPVC	CPVC	114	214	143.1	40	L1	F	
SVIC160BVC	150	160	EPDM	UPVC	CPVC	120	238	149.9	40	L1	F	
SVIC200BVC	180	200	EPDM	UPVC	CPVC	133	300	163.7	40	L1	F	
SVIC225BVC	200	225	EPDM	UPVC	CPVC	125	333	172.3	40	L1	F	
SVIC063DVC	50	63	FPM	UPVC	CPVC	105	116	86.7	35	LO	F & A	
SVIC075DVC	65	75	FPM	UPVC	CPVC	105	134	90.8	35	LO	F & A	
SVIC090DVC	80	90	FPM	UPVC	CPVC	105	152	95.9	40	LO	F & A	
SVIC110DVC	100	110	FPM	UPVC	CPVC	105	176	102.8	40	LO	F & A	
SVIC125DVC	110	125	FPM	UPVC	CPVC	112	190	137.9	40	L1	F	
SVIC140DVC	125	140	FPM	UPVC	CPVC	114	214	143.1	40	L1	F	
SVIC160DVC	150	160	FPM	UPVC	CPVC	120	238	149.9	40	L1	F	
SVIC200DVC	180	200	FPM	UPVC	CPVC	133	300	163.7	40	L1	F	
SVIC225DVC	200	225	FPM	UPVC	CPVC	125	333	172.3	40	L1	F	
SMIC250IVC*	225	250	NBR	PP	CPVC	79	324	203.5	40	LO	F	
SMIC280IVC*	250	280	NBR	PP	CPVC	88	385	212.2	40	L1	F	
SMIC315IVC*	280	315	NBR	PP	CPVC	88	385	220.1	40	L1	F	
* For IP68 sens	sors or com	pact monitor	s only									

L

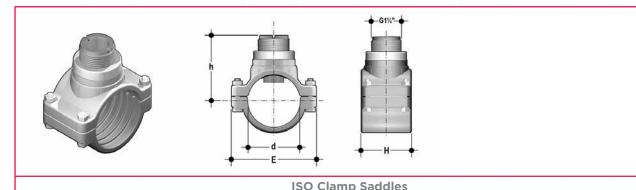


CPVC Weld-on Fittings

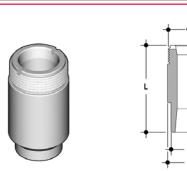

Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
WAIC063	50	63	1 1/4"	CPVC	68.5	40	5	40	LO	F&A
WAIC075	65	75	1 1/4"	CPVC	68.5	40	5	40	LO	F&A
WAIC090	80	90	1 1/4"	CPVC	68.5	40	5	40	LO	F&A
WAIC110	100	110	1 1/4"	CPVC	68.5	40	5	40	LO	F&A
WAIC125	110	125	1 1/4"	CPVC	68.5	40	5	40	LO	F
WAIC140	125	140	1 1/4"	CPVC	68.5	40	5	40	LO	F
WAIC160	150	160	1 1/4"	CPVC	68.5	40	5	40	LO	F
WAIC200	180	200	1 1/4"	CPVC	68.5	40	5	40	LO	F
WAIC225	200	225	1 1/4"	CPVC	68.5	40	5	40	LO	F
WAIC250	225	250	1 1/4"	CPVC	98.5	40	5	40	L1	F
WAIC280	250	280	1 1/4"	CPVC	98.5	40	5	40	L1	F
WAIC315	300	315	1 1/4"	CPVC	98.5	40	5	40	L1	F

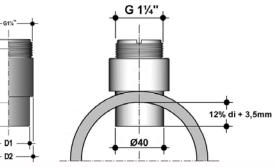
(*) Suitable for: F= Flow sensors; A= Analytical electrodes

1	18
~	/

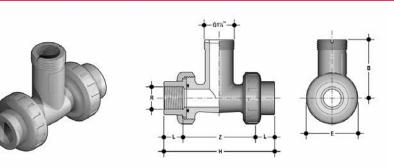


	ISO Metric PP Tee Fittings (female ends for socket welding)														
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)				
TFIM20B	15	20	EPDM	PP	111	73	14.5	73	53	LO	F&A				
TFIM25B	20	25	EPDM	PP	120.5	80	16	80	62	LO	F&A				
TFIM32B	25	32	EPDM	PP	133.5	81	18	81	71	LO	F&A				
TFIM40B	32	40	EPDM	PP	163.5	84	20.5	84	84	LO	F&A				
TFIM50B	40	50	EPDM	PP	195	82.5	23.5	82.5	98	LO	F&A				
TFIM20D	15	20	FPM	PP	111	73	14.5	73	53	LO	F&A				
TFIM25D	20	25	FPM	PP	120.5	80	16	80	62	LO	F&A				
TFIM32D	25	32	FPM	PP	133.5	81	18	81	71	LO	F&A				
TFIM40D	32	40	FPM	PP	163.5	84	20.5	84	84	LO	F&A				
TFIM50D	40	50	FPM	PP	195	82.5	23.5	82.5	98	LO	F&A				

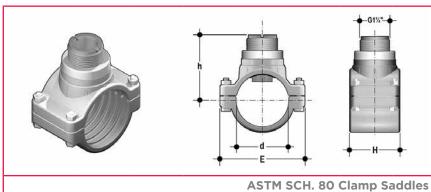



	BSP Female Threaded PP Tee Fittings (parallel threaded female ends)													
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)			
TFFM20B	15	1/2"	EPDM	PP	113	83	15	73	53	L0	F & A			
TFFM25B	20	3/4"	EPDM	PP	126	93.4	16.3	80	62	LO	F & A			
TFFM32B	25	1"	EPDM	PP	139.5	101.3	19.1	81	71	LO	F & A			
TFFM40B	32	1 1/4"	EPDM	PP	17	127.2	21.4	84	84	LO	F & A			
TFFM50B	40	1 1/2"	EPDM	PP	199	156.2	21.4	82.5	98	LO	F & A			
TFFM20D	15	1/2"	FPM	PP	113	83	15	73	53	LO	F & A			
TFFM25D	20	3/4"	FPM	PP	126	93.4	16.3	80	62	LO	F & A			
TFFM32D	25	1"	FPM	PP	139.5	101.3	19.1	81	71	LO	F & A			
TFFM40D	32	1 1/4"	FPM	PP	17	127.2	21.4	84	84	LO	F & A			
TFFM50D	40	1 1/2"	FPM	PP	199	156.2	21.4	82.5	98	LO	F & A			

				L.	so clamp	Sauure					
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SVIC063BME	50	63	EPDM	UPVC	CPVC **	105	116	84.3	35	LO	F & A
SVIC075BME	65	75	EPDM	UPVC	CPVC **	105	134	88.	35	LO	F & A
SVIC090BME	80	90	EPDM	UPVC	CPVC **	105	152	92.6	4	LO	F & A
SVIC110BME	100	110	EPDM	UPVC	CPVC **	105	176	98.8	40	LO	F & A
SVIC125BME	110	125	EPDM	UPVC	CPVC **	112	190	133.3	40	L1	F
SVIC140BME	125	140	EPDM	UPVC	CPVC **	114	214	138.0	40	L1	F
SVIC160BME	150	160	EPDM	UPVC	CPVC **	120	238	144.1	40	L1	F
SVIC200BME	180	200	EPDM	UPVC	CPVC **	133	300	156.4	40	L1	F
SVIC225BME	200	225	EPDM	UPVC	CPVC **	125	333	164.1	40	L1	F
SVIC063DME	50	63	FPM	UPVC	CPVC **	105	116	84.3	35	LO	F & A
SVIC075DME	65	75	FPM	UPVC	CPVC **	105	134	88.	35	LO	F & A
SVIC090DME	80	90	FPM	UPVC	CPVC **	105	152	92.6	4	LO	F & A
SVIC110DME	100	110	FPM	UPVC	CPVC **	105	176	98.8	40	LO	F & A
SVIC125DME	110	125	FPM	UPVC	CPVC **	112	190	133.3	40	L1	F
SVIC140DME	125	140	FPM	UPVC	CPVC **	114	214	138.0	40	L1	F
SVIC160DME	150	160	FPM	UPVC	CPVC **	120	238	144.1	40	L1	F
SVIC200DME	180	200	FPM	UPVC	CPVC **	133	300	156.4	40	L1	F
SVIC225DME	200	225	FPM	UPVC	CPVC **	125	333	164.1	40	L1	F
SMIC250IME*	225	250	NBR	PP	CPVC **	79	324	189.9	40	LO	F
SMIC280IME*	250	280	NBR	PP	CPVC **	88	385	200.2	40	L1	F
SMIC315IME*	300	315	NBR	PP	CPVC **	88	385	209.3	40	L1	F
* For IP68 sense	ors or comp	act monitors	s only ** P	VDF insert	available on i	request					

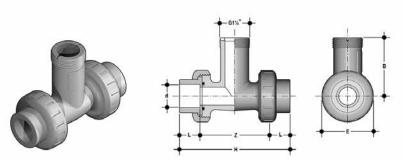


PP	Wel	d-on	Fittings

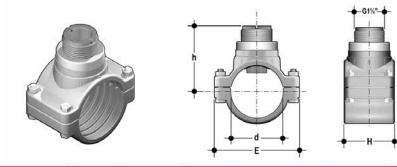

Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)		
WAIM063	50	63	1 1/4"	PP	68.5	40	50	40	LO	F & A		
WAIM075	65	75	1 1/4"	PP	68.5	40	50	40	LO	F & A		
WAIM090	80	90	1 1/4"	PP	68.5	40	50	40	LO	F & A		
WAIM110	100	110	1 1/4"	PP	68.5	40	50	40	LO	F & A		
WAIM125	110	125	1 1/4"	PP	68.5	40	50	40	LO	F		
WAIM140	125	140	1 1/4"	PP	68.5	40	50	40	LO	F		
WAIM160	150	160	1 1/4"	PP	68.5	40	50	40	LO	F		
WAIM200	180	200	1 1/4"	PP	98.5	40	50	40	L1	F		
WAIM225	200	225	1 1/4"	PP	98.5	40	50	40	L1	F		
WAIM250	225	250	1 1/4"	PP	98.5	40	50	40	L1	F		
WAIM280	250	280	1 1/4"	PP	98.5	40	50	40	L1	F		
WAIM315	300	315	1 1/4"	PP	98.5	40	50	40	L1	F		

(*) Suitable for: F= Flow sensors; A= Analytical electrodes

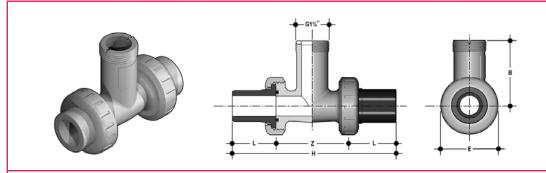
120

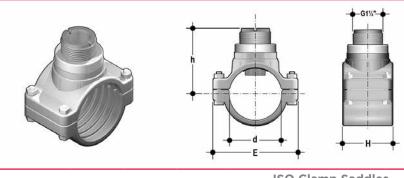


	NPT Female Threaded PP Tee Fittings (NPT threaded female ends)														
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	В	E	Flow Sensor Lenght	Suitable for (*)				
TFNM20B	15	1/2"	EPDM	PP	4.45"	3.05"	0.70"	2.87"	2.09"	LO	F&A				
TFNM25B	20	3/4"	EPDM	PP	4.96"	3.54"	0.71"	3.15"	2.44"	LO	F&A				
TFNM32B	25	1"	EPDM	PP	5.49"	3.71"	0.89"	3.19"	2.80"	LO	F&A				
TFNM40B	32	1 1/4"	EPDM	PP	6.69"	4.84"	0.93"	3.31"	3.31"	LO	F&A				
TFNM50B	40	1 1/2"	EPDM	PP	7.83"	5.59"	1.12"	3.25"	3.86"	LO	F&A				
TFNM20D	15	1/2"	FPM	PP	4.45"	3.05"	0.70"	2.87"	2.09"	LO	F&A				
TFNM25D	20	3/4"	FPM	PP	4.96"	3.54"	0.71"	3.15"	2.44"	LO	F&A				
TFNM32D	25	1"	FPM	PP	5.49"	3.71"	0.89"	3.19"	2.80"	LO	F&A				
TFNM40D	32	1 1/4"	FPM	PP	6.69"	4.84"	0.93"	3.31"	3.31"	LO	F&A				
TFNM50D	40	1 1/2"	FPM	PP	7.83"	5.59"	1.12"	3.25"	3.86"	LO	F&A				

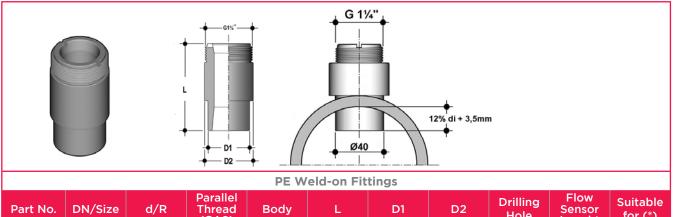


Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SVAC2.0BVM	50	2"	EPDM	UPVC	CPVC**	4.13"	4.57"	3.29"	1.38"	L0	F & A
SVAC2.5BVM	65	2 1/2"	EPDM	UPVC	CPVC**	4.13"	5.28"	3.43"	1.38"	L0	F & A
SVAC3.0BVM	80	3"	EPDM	UPVC	CPVC**	4.13"	5.98"	3.65"	1.57"	LO	F & A
SVAC4.0BVM	100	4"	EPDM	UPVC	CPVC**	4.13"	6.93"	4.00"	1.57"	LO	F & A
SVAC5.0BVM	125	5"	EPDM	UPVC	CPVC**	4.49"	8.43"	5.55"	1.57"	L1	F
SVAC6.0BVM	150	6"	EPDM	UPVC	CPVC**	4.72"	9.37"	5.91"	1.57"	L1	F
SVAC8.0BVM	200	8"	EPDM	UPVC	CPVC**	4.92"	13.11"	6.61"	1.57"	L1	F
SVAC2.0DVM	50	2"	FPM	UPVC	CPVC**	4.13"	4.57"	3.29"	1.38"	LO	F & A
SVAC2.5DVM	65	2 1/2"	FPM	UPVC	CPVC**	4.13"	5.28"	3.43"	1.38"	LO	F & A
SVAC3.0DVM	80	3"	FPM	UPVC	CPVC**	4.13"	5.98"	3.65"	1.57"	LO	F & A
SVAC4.0DVM	100	4"	FPM	UPVC	CPVC**	4.13"	6.93"	4.00"	1.57"	LO	F & A
SVAC5.0DVM	125	5"	FPM	UPVC	CPVC**	4.49"	8.43"	5.55"	1.57"	L1	F
SVAC6.0DVM	150	6"	FPM	UPVC	CPVC**	4.72"	9.37"	5.91"	1.57"	L1	F
SVAC8.0DVM	200	8"	FPM	UPVC	CPVC**	4.92"	13.11"	6.61"	1.57"	L1	F

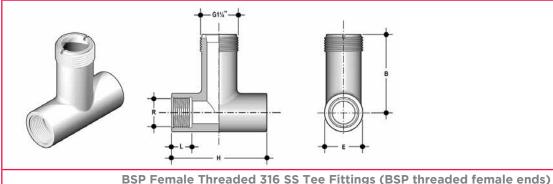

INSTALLATION FITTINGS

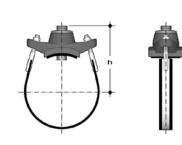

	ISO Metric PVDF Tee Fittings (female ends tor socket welding)														
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)				
TFIF20B	15	20	EPDM	PVDF	111	82	14.5	73	53	L0	F&A				
TFIF25B	20	25	EPDM	PVDF	120.5	88.5	16	80	62	LO	F&A				
TFIF32B	25	32	EPDM	PVDF	133.5	97	18	81	71	LO	F & A				
TFIF40B	32	40	EPDM	PVDF	161.5	120.5	20.5	84	84	LO	F & A				
TFIF50B	40	50	EPDM	PVDF	193.5	146.5	23.5	82.5	98	LO	F & A				
TFIF20D	15	20	FPM	PVDF	111	82	14.5	73	53	LO	F & A				
TFIF25D	20	25	FPM	PVDF	120.5	88.5	16	80	62	LO	F & A				
TFIF32D	25	32	FPM	PVDF	133.5	97	18	81	71	LO	F&A				
TFIF40D	32	40	FPM	PVDF	161.5	120.5	20.5	84	84	LO	F&A				
TFIF50D	40	50	FPM	PVDF	193.5	146.5	23.5	82.5	98	LO	F&A				

	ISO Clamp Saddles													
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)			
SVIF063BF	50	63	EPDM	UPVC	PVDF	105	116	87.2	35	LO	F & A			
SVIF075BF	65	75	EPDM	UPVC	PVDF	105	134	91.5	35	LO	F & A			
SVIF090BF	80	90	EPDM	UPVC	PVDF	105	152	96.8	40	LO	F & A			
SVIF110BF	100	110	EPDM	UPVC	PVDF	105	176	104.0	40	LO	F & A			
SVIF125BF	110	125	EPDM	UPVC	PVDF	112	190	139.3	40	L1	F			
SVIF140BF	125	140	EPDM	UPVC	PVDF	114	214	144.6	40	L1	F			
SVIF160BF	150	160	EPDM	UPVC	PVDF	120	238	151.8	40	L1	F			
SVIF200BF	180	200	EPDM	UPVC	PVDF	133	300	165.9	40	L1	F			
SVIF225BF	200	225	EPDM	UPVC	PVDF	125	333	174.9	40	L1	F			
SVIF063DF	50	63	FPM	UPVC	PVDF	105	116	87.2	35	LO	F & A			
SVIF075DF	65	75	FPM	UPVC	PVDF	105	134	91.5	35	LO	F & A			
SVIF090DF	80	90	FPM	UPVC	PVDF	105	152	96.8	40	LO	F & A			
SVIF110DF	100	110	FPM	UPVC	PVDF	105	176	104.0	40	LO	F & A			
SVIF125DF	110	125	FPM	UPVC	PVDF	112	190	139.3	40	L1	F			
SVIF140DF	125	140	FPM	UPVC	PVDF	114	214	144.6	40	L1	F			
SVIF160DF	150	160	FPM	UPVC	PVDF	120	238	151.8	40	L1	F			
SVIF200DF	180	200	FPM	UPVC	PVDF	133	300	165.9	40	L1	F			
SVIF225DF	200	225	FPM	UPVC	PVDF	125	333	174.9	40	L1	F			

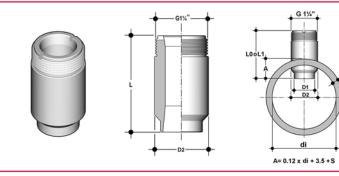


	ISO M	letric PV	C Tee Fit	tings (PE	end con	nectors f	or electr	otusion o	or butt w	elding)	
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)
TFIV20BE	15	20	EPDM	UPVC	183	73	55	73	53	LO	F & A
TFIV25BE	20	25	EPDM	UPVC	223	83	70	80	62	LO	F & A
TFIV32BE	25	32	EPDM	UPVC	237	89	74	81	71	LO	F & A
TFIV40BE	32	40	EPDM	UPVC	266	110	78	84	84	LO	F & A
TFIV50BE	40	50	EPDM	UPVC	295	127	84	82.5	98	LO	F & A
TFIV20DE	15	20	FPM	UPVC	183	73	55	73	53	LO	F & A
TFIV25DE	20	25	FPM	UPVC	223	83	70	80	62	LO	F & A
TFIV32DE	25	32	FPM	UPVC	237	89	74	81	71	LO	F & A
TFIV40DE	32	40	FPM	UPVC	266	110	78	84	84	LO	F & A
TFIV50DE	40	50	FPM	UPVC	295	127	84	82.5	98	LO	F & A


				19	SO Clamp	Saddle	S				
Part No.	DN/ Size	d/R	O-ring	Body	Insert	н	E	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SVIC063BME	50	63	EPDM	UPVC	CPVC	105	116	84.3	35	LO	F & A
SVIC075BME	65	75	EPDM	UPVC	CPVC	105	134	88.	35	LO	F & A
SVIC090BME	80	90	EPDM	UPVC	CPVC	105	152	92.6	4	LO	F & A
SVIC110BME	100	110	EPDM	UPVC	CPVC	105	176	98.8	40	LO	F & A
SVIC125BME	110	125	EPDM	UPVC	CPVC	112	190	133.3	40	L1	F
SVIC140BME	125	140	EPDM	UPVC	CPVC	114	214	138.0	40	L1	F
SVIC160BME	150	160	EPDM	UPVC	CPVC	120	238	144.1	40	L1	F
SVIC200BME	180	200	EPDM	UPVC	CPVC	133	300	156.4	40	L1	F
SVIC225BME	200	225	EPDM	UPVC	CPVC	125	333	164.1	40	L1	F
SVIC063DME	50	63	FPM	UPVC	CPVC	105	116	84.3	35	LO	F & A
SVIC075DME	65	75	FPM	UPVC	CPVC	105	134	88.	35	LO	F & A
SVIC090DME	80	90	FPM	UPVC	CPVC	105	152	92.6	4	LO	F & A
SVIC110DME	100	110	FPM	UPVC	CPVC	105	176	98.8	40	LO	F & A
SVIC125DME	110	125	FPM	UPVC	CPVC	112	190	133.3	40	L1	F
SVIC140DME	125	140	FPM	UPVC	CPVC	114	214	138.0	40	L1	F
SVIC160DME	150	160	FPM	UPVC	CPVC	120	238	144.1	40	L1	F
SVIC200DME	180	200	FPM	UPVC	CPVC	133	300	156.4	40	L1	F
SVIC225DME	200	225	FPM	UPVC	CPVC	125	333	164.1	40	L1	F
SMIC250IME*	225	250	NBR	PP	CPVC	79	324	189.9	40	LO	F
SMIC280IME*	250	280	NBR	PP	CPVC	88	385	200.2	40	L1	F
SMIC315IME*	300	315	NBR	PP	CPVC	88	385	209.3	40	L1	F
* For IP68 sense	ors or comp	act monitor	s only								


Part No.	DN/Size	d/R	Thread (GAS)	Body	L	D1	D2	Hole	Sensor Lenght	for (*)
WAIE063	50	63	1 1/4"	PE	68.5	40	50	40	LO	F&A
WAIE075	65	75	1 1/4"	PE	68.5	40	50	40	LO	F&A
WAIE090	80	90	1 1/4"	PE	68.5	40	50	40	LO	F&A
WAIE110	100	110	1 1/4"	PE	68.5	40	50	40	LO	F&A
WAIE125	110	125	1 1/4"	PE	68.5	40	50	40	LO	F
WAIE140	125	140	1 1/4"	PE	68.5	40	50	40	LO	F
WAIE160	150	160	1 1/4"	PE	68.5	40	50	40	LO	F
WAIE200	180	200	1 1/4"	PE	98.5	40	50	40	L1	F
WAIE225	200	225	1 1/4"	PE	98.5	40	50	40	L1	F
WAIE250	225	250	1 1/4"	PE	98.5	40	50	40	L1	F
WAIE280	250	280	1 1/4"	PE	98.5	40	50	40	L1	F
WAIE315	300	315	1 1/4"	PE	98.5	40	50	40	L1	F

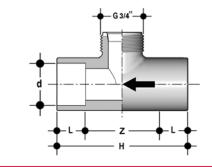
INSTALLATION ON METAL PIPES

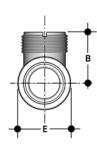


		Doi i cii	luic mic		00 100 1	ittings (/	
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)
TFFX20	15	1/2"	-	316 SS	85	-	16	73	42	LO	F&A
TFFX25	20	3/4"	-	316 SS	95	-	20	81.2	42	LO	F&A
TFFX32	25	1"	-	316 SS	105	-	22.5	81.2	42	LO	F&A
TFFX40	32	1 1/4"	-	316 SS	12	-	20.5	83.8	54	LO	F&A

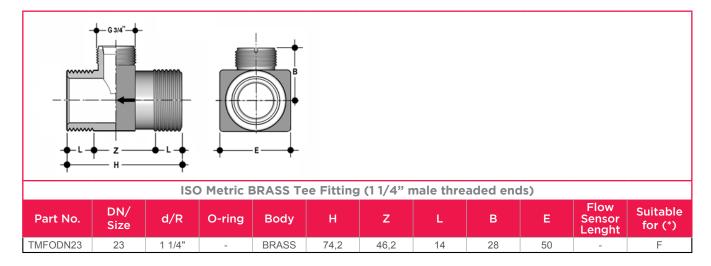
INSTALLATION ON METAL PIPES

	Strap-on Saddles												
Part No.	DN/ Size	O.D. min.	O.D. max	Parallel Thread (GAS)	O-ring	Body	Insert	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)		
SZIC080I	80	88	104	1 1/4"	NBR	Cast iron + SS	CPVC	153	40	L0	F		
SZIC100I	100	112	126	1 1/4"	NBR	Cast iron + SS	CPVC	160	40	LO	F		
SZIC125I	125	140	154	1 1/4"	NBR	Cast iron + SS	CPVC	170	40	LO	F		
SZIC150I	150	168	184	1 1/4"	NBR	Cast iron + SS	CPVC	180	40	L0	F		
SZIC200I	200	218	244	1 1/4"	NBR	Cast iron + SS	CPVC	228	40	L1	F		
SZIC250I	250	272	295	1 1/4"	NBR	Cast iron + SS	CPVC	247	40	L1	F		
SZIC300I	300	322	354	1 1/4"	NBR	Cast iron + SS	CPVC	266	40	L1	F		
SZIC350I	350	356	414	1 1/4"	NBR	Cast iron + SS	CPVC	305	40	L1	F		
SZIC400I	400	406	472	1 1/4"	NBR	Cast iron + SS	CPVC	324	40	L1	F		
SZIC450I	450	457	534	1 1/4"	NBR	Cast iron + SS	CPVC	343	40	L1	F		

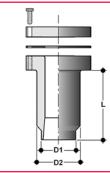



				Wel	d-on Adap	oters				
Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
WAIXL0	40	-	1 1/4"	316L SS	68.5	33,9	34	34	LO	F & A
WAIXL0	50	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	60	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	65	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	80	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	100	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	110	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	125	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	150	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	175	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F & A
WAIXL0	200	-	1 1/4"	316L SS	68.5	33,9	44	44	LO	F
WAIXL0	225	-	1 1/4"	316L SS	68.5	33,9	44	44	L1	F
WAIXL1	250	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	300	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	350	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	400	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	450	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	500	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F
WAIXL1	600	-	1 1/4"	316L SS	98.5	33,9	44	44	L1	F

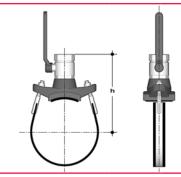
INSTALLATION FITTINGS

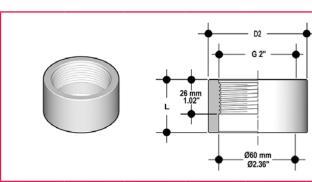

(*) Suitable for: F= Flow sensors; A= Analytical electrodes

INSTALLATION FITTINGS FOR FLS F3.10



	ISO Metric PVC Tee Fittings (female ends for solvent welding)												
Part No.	DN/ Size	d/R	O-ring	Body	н	z	L	в	E	Flow Sensor Lenght	Suitable for (*)		
TMIV20MF	15	20	-	UPVC	43	11	16	27	27	-	F		
TMIV25MF	20	25	-	UPVC	52	14	19	30	33	-	F		
TMIV32MF	25	32	-	UPVC	61,5	17,5	22	33,5	41	-	F		
TMIV40MF	32	40	-	UPVC	74	22	26	38	50	-	F		
TMIV50MF	40	50	-	UPVC	89	27	31	43	61	-	F		


INSTALLATION FITTINGS FOR FLS F3.20


	316L SS Weld-on Adapters											
Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)		
WAIXHP	40	-	1 1/4"	316L SS	68,5	34	42,8	34	LO	F		
WAIXHP	50	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	60	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	65	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	80	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	100	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	110	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	125	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	150	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	175	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		
WAIXHP	200	-	1 1/4"	316L SS	68,5	34	42,8	43	LO	F		

INSTALLATION ON METAL AND PLASTIC PIPES

					Strap-on	Saddles ***					
Part No.	DN/ Size	O.D. min.	O.D. max	Parallel Thread (GAS)	O-ring	Body	Insert	h	Drilling Hole	Flow Sensor Lenght	Suitable for (*)
SZIC080IHT	80	88	104	2.00"	NBR	Cast iron + SS	-	160	min 32	-	F
SZIC100IHT	100	112	126	2.00"	NBR	Cast iron + SS	-	170	min 32	-	F
SZIC125IHT	125	140	154	2.00"	NBR	Cast iron + SS	-	172	min 32	-	F
SZIC150IHT	150	168	184	2.00"	NBR	Cast iron + SS	-	172	min 32	-	F
SZIC200IHT	200	218	244	2.00"	NBR	Cast iron + SS	-	177	min 32	-	F
SZIC250IHT	250	272	295	2.00"	NBR	Cast iron + SS	-	175	min 32	-	F
SZIC300IHT	300	322	354	2.00"	NBR	Cast iron + SS	-	178	min 32	-	F
SZIC350IHT	350	356	414	2.00"	NBR	Cast iron + SS	-	178	min 32	-	F
SZIC400IHT	400	406	472	2.00"	NBR	Cast iron + SS	-	171	min 32	-	F
SZIC450IHT	450	457	534	2.00"	NBR	Cast iron + SS	-	180	min 32	-	F
*** Bigger size	s available	on request									

	Weld-on Adapters												
Part No.	DN/Size	d/R	Parallel Thread (GAS)	Body	L	D1	D2	Drilling Hole	Flow Sensor Lenght	Suitable for (*)			
WAIXHT	350	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	400	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	450	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	500	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	600	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	700	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	800	-	2.00"	316L SS	40	-	75	min 32	-	F			
WAIXHT	900	-	2.00"	316L SS	40	-	75	min 32	-	F			

129

SPECIFIC ADAPTERS FOR ANALYTICAL ELECTRODES INSTALLATION

ADAPTERS FOR IN-LINE, SUBMERSIBLE AND WET-TAP INSTALLATION

			In-line		
	Part No.	Body	Description	Suitable for	Weight (gr.)
P 2	EG12SS	SS	1/2" male Electrode Gland	C300	300
	TCONIV32E	PVCU	T fitting d32 DN25	C150-200	500
	TCONIV40E	PVCU	T fitting d40 DN32	C150-200	550
	TCONIV50E	PVCU	T fitting d50 DN40	C150-200	600
	TCONIC32E	PVCC	T fitting d32 DN25	C150-200	500
	TCONIC40E	PVCC	T fitting d40 DN32	C150-200	550
	TCONIC50E	PVCC	T fitting d50 DN40	C150-200	600
	TPHIV32E	PVCU	T fitting d32 DN25	PH/ORP.200 (excluded PH223CD; ORP223CD)	500
	TPHIV40E	PVCU	T fitting d40 DN32	PH/ORP.200 (excluded PH223CD; ORP223CD)	550
	TPHIV50E	PVCU	T fitting d50 DN40	PH/ORP.200 (excluded PH223CD; ORP223CD)	600
	TPHIC32E	PVCC	T fitting d32 DN25	PH/ORP.200 (excluded PH223CD; ORP223CD)	500
	TPHIC40E	PVCC	T fitting d40 DN32	PH/ORP.200 (excluded PH223CD; ORP223CD)	550
	TPHIC50E	PVCC	T fitting d50 DN40	PH/ORP.200 (excluded PH223CD; ORP223CD)	600
	TPHIC32C	PVCC	T fitting d32 DN25	PH660-ORP660	500
	TPHIC40C	PVCC	T fitting d40 DN32	PH660-ORP660	550
	TPHIC50C	PVCC	T fitting d50 DN40	PH660-ORP660	600
	EG66P	PVCC	3/4" male Electrode Gland	PH660-ORP660	45
Ø, 4	MK660	PVCC	Installation KIT (adapter + yellow cap) for FLS fittings up to DN100 (4")	PH660-ORP660	165
	MK150200	PVCC	Installation KIT (EG50P, adapter, yellow cap) for FLS fittings up to DN100 (4")	PH200C, ORP200C, C150.1, C150.1 TC	
- Commercia	GEG135SE	PP	gland electrode for PG13.5 electrode with electrode head protection 1 1/4" G.M.	PH430CD; ORP430CD; PH435CD	500
6	F3.SP2.4	PVCU	Yellow Electrode Cap for FLS fittings up to DN100 (4")	PH223CD; ORP223CD	60

ADAPTERS FOR IN-LINE, SUBMERSIBLE AND WET-TAP INSTALLATION

		In-line / Submersible		
Part No.	Body	Description	Suitable for	Weight (gr.)
GEG135	PVCU	gland electrode for PG13.5 electrode or o 12mm body 1/2" G.M.	PH-ORP.400	70
EG50P	PP	1/2" male Electrode Gland	PH-ORP.200 (excluded PH223CD; ORP223CD), C150-200, T970278; T970196	45
EG75P	PP	3/4" male Electrode Gland	PH-ORP.200 (excluded PH223CD; ORP223CD), C150-200, T970278; T970196	45

Submersible					
Part No.	Body	Description	Suitable for	Weight (gr.)	
MIFV20X05	PVCU	Double socket 20x1/2" (pipe customer supplied)	PH200C-ORP200C (with EG50P), PH222CD- ORP222CD (with CN653), (GEG135), PH650-ORP650 (with CN653), C150-200 (with EG50P)	30	
MIMC20X05	PVCC	Double socket 20x1/2" (pipe customer supplied)	PH200C-ORP200C (with EG50P), PH222CD- ORP222CD (with CN653), PH650-ORP650 (with CN653), C150-200 (with EG50P)	30	

	Hot tap or horizontal					
	Part No.	Body	Description	Suitable for	Weight (gr.)	
	WT675	PVCC	Electrode gland for hot tap installation: max insertion 300mm (12")	PH655-ORP655	700	
M	WT675 TC1	PVCC,SS	Electrode gland for hot tap installation with TC: max insertion 300mm (12")	PH655-ORP655	880	

SPARE PARTS AND ACCESSORIES FOR MONITORS, FLOW SENSORS AND ANALYTICAL ELECTRODES

MONITOR SPARE PARTS

	Spare Parts for M9.00				
Part No.	Name	Description	Weight (gr.)		
F9.SP4.2	PG 11	PG 11 Cable Gland for Compact mounting kit	12		
M9.LR1	Locking ring	Plastic locking ring for M9.02	24		
M9.SN1	Fixing snails	2 plastic fixing snails for panel installation of all FLS Monitors (except for M9.02)	16		
F9.SP4.3	PG11 cap	Cap for PG11	8		

FLOW SENSORS SPARE PARTS

		Spare Parts for F3.00	
Part No.	Name	Description	Weight (gr.)
F3.SP1	4 pole Cable Plug	Cable Plug according to DIN 43650	30
F3.SP2.1	Sensor Cap	Black Sensor Cap, for Hall version	42
F3.SP2.2	Sensor Cap	Red Sensor Cap, for Coil version	42
F3.SP2.4	Sensor Cap	Yellow Sensor Cap, for push-pull version	42
F3.SP2.6	Sensor Cap	SS AISI 316 Sensor Cap, for SS Hall and Coil versions	205
F3.SP3.1	O-Rings	EPDM Sensor body O-rings	4
F3.SP3.2	O-Rings	FPM Sensor body O-rings	4
F3.SP4.2	Rotor KIT	ECTFE (Halar®) rotor with Machined Ceramic Shaft and Bearings	8
F3.SP4.3	Rotor KIT	ECTFE (Halar®) rotor with SS Shaft	8
F3.SP5.1	Sensor Plug	CPVC Sensor Plug	140
F3.SP5.2	Sensor Plug	PVDF Sensor Plug	150
F3.SP5.3	Sensor Plug	Stainless Steel Sensor Plug	470
F3.SP6	Electrical cable	Cable (per meter), 22AWG, 3 cond.	28

	Spare Parts for F3.20				
Part No.	Name	Description	Weight (gr.)		
F3.SP4.3	Rotor KIT	ECTFE (Halar) rotor with SS shaft	8		
F3.SP8	Seal and screws kit	SS screws + graphite gasket	70		

	Spare Parts for F6.30					
Part No.	Name	Description	Weight (gr.)			
F6.KC1	Compact mounting kit	Plastic adapter with compact cap, plastic locking ring and sensor locking ring plus 1 x PG11 and 2 x PG11 cap	137			
F9.SP4.2	PG 11	PG 11 Cable Gland for Compact kit	12			
F3.SP3.1	O-Rings	EPDM Sensor body O-Rings	4			
F3.SP3.2	O-Rings	FPM Sensor body O-Rings	4			
F6.30. SP1.S	Electronic device	Electronic device with 4-20 mA output and freq./volumetric pulse output for paddlewheel flow sensor	180			

Spare Parts for F3.10					
Part No.	Name	Description	Weight (gr.)		
F3.SP2.7	Sensor Cap	Gray Sensor Cap	10		
F3.SP3.3	O-Rings	EPDM Sensor body O-rings	2		
F3.SP3.4	O-Rings	FPM Sensor body O-rings	2		
F3.SP11	Rotor KIT	PVC rotor with AISI 316L Shaft	2		

FLOW SENSORS SPARE PARTS

	Spare Parts for F3.05					
Part No.	Name	Description	Weight (gr.)			
F3.SP1	4 pole Cable Plug	Cable Plug according to DIN 43650	30			
F3.SP2.1	Sensor Cap	Black Sensor Cap for Hall version	42			
F3.SP3.1	O-Rings	EPDM Sensor body O-rings	4			
F3.SP3.2	O-Rings	FPM Sensor body O-rings	4			
F3.SP4.2	Rotor KIT	ECTFE (Halar®) rotor with Machined Ceramic Shaft and Bearings	8			
F3.SP5.1	Sensor Plug	CPVC Sensor Plug	140			
F3.SP5.2	Sensor Plug	PVDF Sensor Plug	150			
F3.SP5.3	Sensor Plug	Stainless Steel Sensor Plug	470			

		Spare Parts for F6.60	
Part No.	Name	Description	Weight (gr.)
F6.KC1	Compact mounting kit	Plastic adapter with compact cap, plastic locking ring and sensor locking ring plus 1 x PG11 and 2 x PG11 cap	137
F9.SP4.2	PG 11	PG 11 Cable Gland for Compact kit	12
F3.SP3.1	O-Rings	EPDM Sensor body O-Rings	4
F3.SP3.2	O-Rings	FPM Sensor body O-Rings	4
F6.60. SP1.S	Electronic device	Magmeter electronic device with 4-20 mA output and freq./volumetric pulse output for bi- directional sensor	180
F6.60M. SP09	Magmeter bi- directional flow sensor	316L SS/PVDF body - EDPM O-Rings - L0 length	330
F3.60M. SP10	Magmeter bi- directional flow sensor	316L SS/PVDF body - FPM O-Rings - L0 length	330
F3.60M. SP11	Magmeter bi- directional flow sensor	316L SS/PVDF body - EDPM O-Rings - L1 length	400
F3.60M. SP12	Magmeter bi- directional flow sensor	316L SS/PVDF body - FPM O-Rings - L1 length	400
F3.60M. SP13	Magmeter bi- directional flow sensor	CuNi/PVDF body - EPDM O-Ring - L0 lenght	330
F3.60M. SP14	Magmeter bi- directional flow sensor	CuNi/PVDF body - FPM O-Ring - L0 lenght	330
F3.60M. SP15	Magmeter bi- directional flow sensor	CuNi/PVDF body - EPDM O-Ring - L1 lenght	400
F3.60M. SP16	Magmeter bi- directional flow sensor	CuNi/PVDF body - FPM O-Ring - L1 lenght	400
F3.60M. SP17	Magmeter bi- directional flow sensor	AISI 316L/PEEK body - FPM O-Ring - L0 lenght	330
F3.60M. SP18	Magmeter bi- directional flow sensor	AISI 316L/PEEK body - FPM O-Ring - L1 lenght	400

	Spare Parts for F6.61				
Part No.	Name	Description	Weight (gr.)		
F6.KC1	Magmeter Compact mounting kit	Plastic adapter with compact cap, plastic locking ring and sensor locking ring plus 1 x PG11 and 2 x PG11 cap	137		
F9.SP4.2	PG 11	PG 11 Cable Gland for Compact kit	12		
F1.SP3	Isolation Valve	2" Brass Ball Valve	1800		
F1.SP5	Isolation Valve	1 1/4" Brass Ball Valve	1800		
F1.SP6	2" to 1 1/4" Reduction	Zinc Plated Steel 2" BS male to 1 1/4" BS female	405		
F1.SP7	2" to 1 1/4" Reduction	Zinc Plated Steel 2" NPT male to 1 1/4" BS female reduction	405		
F6.60M. SP1.S	Electronic device	Magmeter electronic device with 4-20mA output and freq. Output /volumetric pulse output	180		
F3.61M. SP01	Magmeter flow sensor for Hot Tap installation	304 SS/PVDF body	1000		

FLOW SENSORS SPARE PARTS

	Spare Parts for F111				
Part No.	Name	Description	Weight (gr.)		
F3.SP4	Rotor KIT	ECTFE (Halar®) rotor with Ceramic Shaft and Bearings	8		
F3.SP9	Turbine KIT	PVDF Turbine with ceramic shaft and bearings + fixing bushings	10		
F1.SP1.01	Hall Paddlewheel Sensor Body	Stainless Steel Hall Paddlewheel Flow Sensor	1000		
F1.SP1.02	Hall Paddlewheel Sensor Body	Brass Hall Paddlewheel Flow Sensor	1000		
F1.SP1.HT	Hall Turbine Sensor Body	Stainless Steel MONO-DIRECTIONAL Hall Effect TURBINE Sensor Body	1000		
F1.SP1.BD	Bi-directional Turbine Sensor Body	Stainless Steel BI-DIRECTIONAL Hall Effect TURBINE Sensor Body	1000		
F1.SP2.01	Coil Paddlewheel Sensor Body	Stainless Steel Coil Effect Paddlewheel Sensor Body	1000		
F1.SP2.02	Coil Paddlewheel Sensor Body	Brass Coil Effect Paddlewheel Sensor Body	1000		
F1.SP3	Isolation Valve	2" Brass Ball Valve	1800		
F1.SP5	Isolation Valve	1 1/4" Brass Ball Valve	1800		
F1.SP6	Reduction 2" to 1 1/4"	Reduction 2" BS male to 1 1/4" BS female	405		
F1.SP7	Reduction 2" to 1 1/4"	Reduction 2" NPT male to 1 1/4" BS female	405		
F3.SP6	Electrical Cable	Cable (per meter), 22AWG, 3 cond.	28		

MONITOR ACCESSORIES

Accessories for M9.00							
Part No.	Name	Description	Weight (gr.)				
F6.KC1	Compact mounting kit	Plastic adapter with compact cap and locking ring for M9.02 only	137				
M9.KW1	Wall mounting kit	144x144mm plastic box for wall installation of all panel mounting monitors	600				
M9.KW2	Wall mounting kit with power supply	144x144mm plastic box for wall installation of all panel mounting monitors and 110/230VAC to 24 VDC power supply included	900				

ANALYTICAL ELECTRODES ACCESSORIES

Accessories for pH/ORP electrodes						
	Part No.	Name	Description	Weight (gr.)		
	CN653	5m Universal cable assembly	Cable for PH222 CD, PH223 CD, ORP222 CD, ORP223 CD, PH-ORP.600	300		
	CN65310M	10m Universal cable assembly	Cable for PH222 CD, PH223 CD, ORP222 CD, ORP223 CD, PH-ORP.600	400		
	CN65315M	15m Universal cable assembly	Cable for PH222 CD, PH223 CD, ORP222 CD, ORP223 CD, PH-ORP.600	500		
0	CN653 TC1	5m Submersible cable assembly with TEMPERATURE COMPENSATION (PT 100)	Cable for PH222 CD, PH223 CD, PH650CD, PH650CD HF, PH650CD DA, PH650CD LC	350		
9	CE5S7	5m Cable assembly	Cable for PH435 CD PH430 CD ORP430CD	300		
	CE10S7	10m Cable assembly	Cable for PH435 CD PH430 CD ORP430CD	400		
	CE15S7	15m Cable assembly	Cable for PH435 CD PH430 CD ORP430CD	500		
- Anna - Anna - Anna	B104	pH buffer	Buffer pH 4,01	450		
	B107	pH buffer	Buffer pH 7,00	450		
	B110	pH buffer	Buffer pH 10,00	450		
	B3KCL	pH buffer	3KCI solution	500		
	B475	ORP buffer	Buffer 475mV	450		

Accessories for Conductivity Sensors					
	Part No.	Name	Description	Weight (gr.)	
/	T970278	5m PT100 Temperature Epoxy body Sensor	2 wire PT100 Temperature Sensor with epoxy body	200	
	T970196	5m PT100 Temperature Epoxy body Sensor	2 wire PT100 Temperature Sensor with epoxy body (no metal in contact)	200	
- 1000 M	B0018	Conductivity buffer	Calibration solution for low conductivity (18 microsiemens)	450	
	B1417	Conductivity buffer	Calibration solution for conductivity (1417 microsiemens)	450	

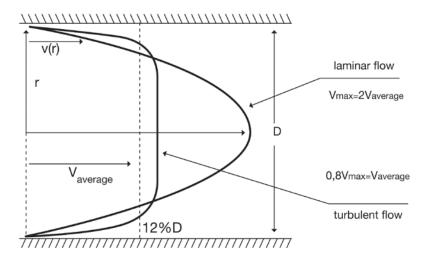
TECHNICAL INFORMATION ABOUT FLOW AND ANALYTICAL MEASUREMENT

FLOW MEASUREMENT

Insertion technology is based on fluid speed meters, properly installed in a cylindrical straight pipe, and used to measure the local flow velocity Vm to calculate the average velocity Va and the volumetric flow rate Qv. These flow sensors are theoretically supported by fluid-dynamic laws applicable to any circular cross section pipe when some physical conditions (fully developed turbulent flow) are respected.

Those laws state the relationship between the measured local flow velocity and the average flow velocity (UNI 10727; ISO 7145).

The relationship between average velocity Va and measured velocity is usually expressed through the "Profile Factor": Fp = Va / VmUsing the above mentioned factor: $Qv = Va * ID^2 / 4 = Fp * Vm * ID^2 / 4$ ID = pipe inside diameter


Two different positions are suitable for the flow velocity measuring point:

1. Critical position: the velocity sensor is inserted in a peculiar point where the local velocity correspond to the average velocity (12% of Internal Diameter):

Va = Vm >>> Fp = 1.

2. Central position: the velocity sensor is placed exactly in the centre of the pipe cross section. The local velocity correspond to the maximum velocity:

Vm = Vmax >>> Fp < 1.

All velocity based flow sensors provide an accurate and reliable indication only when they are measuring a fully developed turbulent flow. Fully developed turbulent flow occurs in every Newtonian fluid when the Reynolds Number is greater than 4500.

Fully developed turbulent flow can be more difficult to achieve with high viscosity liquids, low flow rates or large pipes. Quite often a reduction of the pipe size to increase the local flow velocity is enough to produce a proper Reynolds Number:

Re = V x ID x Sg / μ where: V = flow velocity in m/s ID = pipe inside diameter in meter Sg = Specific Gravity in Kg/m3 μ = Dynamic Viscosity in Pa*s

(1 Pa*s = 10³ cP)

or, converting flow velocity in flow rate:

Re = $1.2732 \times Qv \times Sg / \mu \times ID$

where:

Qv = flow rate in I/s

Sg = Specific Gravity in Kg/m3

 μ = Dynamic Viscosity in Pa*s

(1 Pa*s = 10³ cP)

ID = pipe inside diameter in meter

Re = 3162.76 x Qv x Sg / μ x ID where:

Qv = flow rate in gpm

Sg = Specific Gravity in Kg/m3

µ = Dynamic Viscosity in centipoises (1 Pa*s = 10³ cP)

ID = pipe inside diameter in inches

Insertion flow sensor

Paddlewheel sensor

This flow sensor consists of a transducer (hall effect for powered system and coil for battery powered system) and a ECTFE five-blade (four blades for F3.10) open cell paddlewheel fixed on a ceramic shaft (SS in case of F3.10, F3.20 and SS version of F3.00). Shaft is orthogonal to the flow direction. The paddlewheel is equipped with a permanent magnet integrated into each blade. As the magnet passes close to the transducer a pulse is generated. When liquid flows into the pipe, the paddlewheel is set in rotation producing a square wave output signal. The frequency is proportional to the flow velocity. The sensor is installed into the pipe using a wide range of insertion type fittings supplied by FLS.

Turbine sensor

This flow sensor consists of a transducer and a ECTFE eight-blade turbine on a ceramic shaft. Shaft is parallel to the flow direction and sensor is able to recognize both flow directions. The propeller is equipped with a permanent magnet integrated into each blade. As the magnet passes close to the transducer a pulse is generated. When liquid flows into the pipe, the turbine is set in rotation producing a square wave output signal. The frequency is proportional to the flow velocity. The sensor is installed into the pipe using a wide range of insertion type fittings supplied by FLS.

F3.05 Flow Switch

F3.05 is a flow switch based on a paddlewheel sensor from mechanical point of view.

This means that a trasducer is present as well as a five-blade open cell paddlewheel. Also in this case, rotor is equipped with a permanent magnet integrated into each blade. As the magnet passes close to the transducer an output pulse is generated. That pulse is monitored by a missing signal circuit that trips an internal relay when the pulse frequency drops below the factory preset frequency of 0.15 m/s (0.5 ft/s). The switch is installed into the pipe using a wide range of insertion type fittings supplied by FLS.

Magmeter sensor

Magmeter sensor is based on Faraday's law since a voltage is induced in an electrical conductor when it moves in a magnetic field. A coil mounted into sensor body generates a magnetic field perpendicular to the flow direction. The magnetic field and the flow velocity induce a voltage between the electrodes. The voltage is directly proportional to the flow velocity.

The voltage is converted into a flow proportional 4-20mA output signal or frequency output signal.

In-line flow sensor

ULF sensor

This in-line flow sensor consists of a transducer and a five-blade paddlewheel (four-blade paddlewheel for ULF0X.X.0). The paddlewheel is equipped with a permanent magnet integrated into each blade. As the magnet passes close to the transducer a pulse is generated. When liquid flows into the sensor body, the paddlewheel is set in rotation producing a square wave output signal. The generated frequency is proportional to the flow velocity.

F3.80 Oval Gear sensor

This in-line sensor body contains two oval gears set into rotation by a flowing fluid. The two gears are meshed at 90° to define a fixed fluid volume pumped out every rotation.

Two permanent magnets are positioned into each gear and a hall effect sensor detects the magnetic field generating a square wave signal output with frequency proportional to the number of fluid volumes pumped out.

VELOCITY/FLOW RATE CONVERSION TABLES

Ve	Velocity [m/s] = (Flow Rate [l/s] x 1273.2) / ID ²								Flow Rate [l/s] = (Velocity [m/s] x ID ²) / 1273.2						
								Velo	ocity						
	ft/sec	0,16	0,33	0,5	0,7	1,6	2,6	3,3	6,6	9,8	13,1	16,4	20	23	26,2
	m/s	0,05	0,1	0,15	0,2	0,5	0,8	1	2	3	4	5	6	7	8
D [mm]	DN [mm]							Flow F	Rate I/s						
20	15	0,01	0,02	0,03	0,04	0,09	0,14	0,18	0,35	0,53	0,71	0,88	1,06	1,24	1,41
25	20	0,02	0,03	0,05	0,06	0,16	0,25	0,31	0,63	0,94	1,26	1,57	1,89	2,20	2,51
32	25	0,02	0,05	0,07	0,10	0,25	0,39	0,49	0,98	1,47	1,96	2,45	2,95	3,44	3,93
40	32	0,04	0,08	0,12	0,16	0,40	0,64	0,80	1,61	2,41	3,22	4,02	4,83	5,63	6,43
50	40	0,06	0,13	0,19	0,25	0,63	1,01	1,26	2,51	3,77	5,03	6,28	7,54	8,80	10,05
63	50	0,10	0,20	0,29	0,39	0,98	1,57	1,96	3,93	5,89	7,85	9,82	11,78	13,74	15,71
75	65	0,17	0,33	0,50	0,66	1,66	2,65	3,32	6,64	9,96	13,27	16,59	19,91	23,23	26,55
90	80	0,25	0,50	0,75	1,01	2,51	4,02	5,03	10,05	15,08	20,11	25,13	30,16	35,19	40,21
110	100	0,39	0,79	1,18	1,57	3,93	6,28	7,85	15,71	23,56	31,42	39,27	47,13	54,98	62,83
125	110	0,48	0,95	1,43	1,90	4,75	7,60	9,50	19,01	28,51	38,01	47,52	57,02	66,53	76,03
140	125	0,61	1,23	1,84	2,45	6,14	9,82	12,27	25,54	36,82	49,09	61,36	73,63	85,91	98,18
160	150	0,88	1,77	2,65	3,53	8,84	14,14	17,67	35,34	53,02	70,69	88,36	106,03	123,70	141,38
200	180	1,27	2,54	3,82	5,09	12,72	20,36	25,45	50,90	76,34	101,79	127,24	152,69	178,13	203,58
225	200	1,57	3,14	4,71	6,28	15,71	25,13	31,42	62,83	94,25	125,67	157,08	188,50	219,92	251,34
250	225	1,99	3,98	5,96	7,95	19,88	31,81	39,76	79,52	119,29	159,05	198,81	238,57	278,33	318,10
280	250	2,45	4,91	7,36	9,82	25,54	39,27	49,09	98,18	147,27	196,36	245,44	294,53	343,62	392,71
315	280	3,08	6,16	9,24	12,32	30,79	49,26	61,58	123,15	184,73	246,31	307,89	369,46	431,04	492,62

Velo	city [m	/s] = (Flow	Rate [l/min]	x 21.16	5) / ID ²		Flow F	Rate [l/m	nin] = (V e	elocity [m/s] x I C	0²) / 21.1	6
									Veloci	ity					
	ft/sec	0,16	0,33	0,5	0,7	1,6	2,6	3,3	6,6	9,8	13,1	16,4	20	23	26,2
	m/s	0,05	0,1	0,15	0,2	0,5	0,8	1	2	3	4	5	6	7	8
D [mm]	DN [mm]							Flo	w Rate	l/min					
20	15	0,5	1,1	1,6	2,1	5,3	8,5	10,6	21,3	31,9	42,5	53,2	63,8	74,4	85,1
25	20	0,9	1,9	2,8	3,8	9,5	15,1	18,9	37,8	56,7	75,6	94,5	113,4	132,3	151,2
32	25	1,5	3,0	4,4	5,9	14,8	23,6	29,5	59,1	88,6	118,1	147,7	177,2	206,8	236,3
40	32	2,4	4,8	7,3	9,7	24,2	38,7	48,4	96,8	145,2	193,6	242,0	290,4	338,8	387,1
50	40	3,8	7,6	11,3	15,1	37,8	60,5	75,6	151,2	226,8	302,5	378,1	453,7	529,3	604,9
63	50	5,9	11,8	17,7	23,6	59,1	94,5	118,1	236,3	354,4	472,6	590,7	708,9	827,0	945,2
75	65	10,0	20,0	30,0	39,9	99,8	159,7	199,7	399,3	599,0	798,7	998,3	1198,0	1397,7	1597,4
90	80	15,1	30,2	45,4	60,5	151,2	242,0	302,5	604,9	907,4	1209,8	1512,3	1.814,7	2117,2	2419,7
110	100	23,6	47,3	70,9	94,5	236,3	378,1	472,6	945,2	1417,8	1890,4	2362,9	2835,5	3308,1	3780,7
125	110	28,6	57,2	85,8	114,4	285,9	457,5	571,8	1143,7	1715,5	2287,3	2859,2	3431,0	4002,8	4574,7
140	125	36,9	73,8	110,8	147,7	369,2	590,7	738,4	1476,8	2215,3	2953,7	3692,1	4430,5	5169,0	5907,4
160	150	53,2	106,3	159,5	212,7	531,7	850,7	1063,3	2126,7	3190,0	4253,3	5316,6	6380,0	7443,3	8506,6
200	180	76,6	153,1	229,7	306,2	765,6	1225,0	1531,2	3062,4	4593,6	6124,8	7656,0	9187,1	10718,3	12249,5
225	200	94,5	189,0	283,6	378,1	945,2	1512,3	1890,4	3780,7	5671,1	7561,4	9451,8	11342,2	13232,5	15122,9
250	225	119,6	239,2	358,9	478,5	1196,2	1914,0	2392,5	4785,0	7177,5	9569,9	11962,4	14354,9	16747,4	19139,9
280	250	147,7	295,4	443,1	590,7	1476,8	2362,9	2953,7	5907,4	8861,1	11814,7	14768,4	17722,1	20675,8	23629,5
315	280	185,3	370,5	555,8	741,0	1852,6	2964,1	3705,1	7410,2	11115,3	14820,4	18525,5	22230,6	25935,7	29640,8

VELOCITY/FLOW RATE CONVERSION TABLES

Velo	Velocity [m/s] = (Flow Rate [l/h] × 0.35344) / ID ²						Flow Rate [l/h] = (Velocity [m/s] x ID ²) / 0.35344							
								Velo	city					
	ft/sec	0,16	0,33	0,5	0,7	1,6	3,3	6,6	9,8	13,1	16,4	20	23	26,2
	m/s	0,05	0,1	0,15	0,2	0,5	1	2	3	4	5	6	7	8
D [mm]	DN [mm]							Flow Ra	ate l/h					
20	15	32	64	95	127	318	637	1273	1910	2546	3183	3820	4456	5093
25	20	57	113	170	226	566	1132	2263	3395	4527	5659	6790	7922	9054
32	25	88	177	265	354	884	1768	3537	5305	7073	8842	10610	12378	14147
40	32	145	290	435	579	1449	2897	5794	8692	11589	14486	17383	20281	23178
50	40	226	453	679	905	2263	4527	9054	13581	18108	22635	27162	31689	36215
63	50	354	707	1061	1415	3537	7073	14147	21220	28293	35367	42440	49513	56587
75	65	598	1195	1793	2391	5977	11954	23908	35862	47816	59770	71724	83678	95632
90	80	905	1811	2716	3622	9054	18108	36215	54323	72431	90539	108646	126754	144862
110	100	1415	2829	4244	5659	14147	28293	56587	84880	113173	141467	169760	198053	226347
125	110	1712	3423	5135	6847	17117	34235	68470	102705	136940	171175	205410	239645	273880
140	125	2210	4421	6631	8842	22104	44208	88417	132625	176833	221042	265250	309458	353667
160	150	3183	6366	9549	12732	31830	63660	127320	190980	254640	318300	381960	445620	509280
200	180	4584	9167	13751	18334	45835	91670	183341	275011	366682	458352	550023	641693	733364
225	200	2659	11317	16976	22635	56587	113173	226347	339520	452694	565867	679040	792214	905387
250	225	7162	14324	21485	28647	71618	143235	286470	429705	572940	716175	859410	1002645	1145880
280	250	8842	17683	26525	35367	88417	176833	353667	530500	707334	884167	1061000	1237834	1414667
315	280	11091	22182	33273	44364	110910	221820	443640	665459	887279	1109099	1330919	1552739	1774559

Velocity [m/s] = (Flow Rate [l/h] x 0.35344) / ID ²							Flow Rate [l/h] = (Velocity [m/s] x ID ²) / 0.35344								
									Velocity						
	ft/sec	0,16	0,33	0,5	0,7	1,6	2,6	3,3	6,6	9,8	13,1	16,4	20	23	26,2
	m/s	0,05	0,1	0,15	0,2	0,5	0,8	1	2	3	4	5	6	7	8
D [mm]	DN [mm]							Flo	w Rate	m³/h					
20	15	0,03	0,06	0,10	0,13	0,32	0,51	0,64	1,27	1,91	2,55	3,18	3,82	4,46	5,09
25	20	0,06	0,11	0,17	0,23	0,57	0,91	1,13	2,26	3,40	4,53	5,66	6,79	7,92	9,05
32	25	0,09	0,18	0,27	0,35	0,88	1,41	1,77	3,54	5,31	7,07	8,84	10,61	12,38	14,15
40	32	0,14	0,29	0,43	0,58	1,45	2,32	2,90	5,79	8,69	11,59	14,49	17,38	20,28	23,18
50	40	0,23	0,45	0,68	0,91	2,26	3,62	4,53	9,05	13,58	18,11	22,63	27,16	31,69	36,22
63	50	0,35	0,71	1,06	1,41	3,54	5,66	7,07	14,15	21,22	28,29	35,57	42,44	49,51	56,59
75	65	0,60	1,20	1,79	2,39	5,98	9,56	11,95	23,91	35,86	47,82	59,77	71,72	83,68	95,63
90	80	0,91	1,81	2,72	3,62	9,05	14,49	18,11	36,22	54,32	72,43	90,54	108,65	126,75	144,86
110	100	1,41	2,83	4,24	5,66	14,15	22,63	28,29	56,59	84,88	113,17	141,47	169,76	198,05	226,35
125	110	1,71	3,42	5,14	6,85	17,12	27,39	34,23	68,47	102,70	136,94	171,17	205,41	239,64	273,88
140	125	2,21	4,42	6,63	8,84	22,10	35,37	44,21	88,42	132,63	176,83	221,04	265,25	309,46	353,67
160	150	3,18	6,37	9,55	12,73	31,83	50,93	63,66	127,32	190,98	254,64	318,30	381,96	445,62	509,28
200	180	4,58	9,17	13,75	18,33	45,84	73,34	91,67	183,34	275,01	366,68	458,35	550,02	641,69	733,36
225	200	5,66	11,32	16,98	22,63	56,59	90,54	113,17	226,35	339,52	452,69	565,87	679,04	792,21	905,39
250	225	7,16	14,32	21,49	28,65	71,62	114,59	143,24	286,47	429,71	572,94	716,18	859,41	1002,65	1145,88
280	250	8,84	17,68	26,53	35,37	88,42	141,47	176,83	353,67	530,50	707,33	884,17	1061,00	1237,83	1414,67
315	280	11,09	22,18	33,27	44,36	110,91	177,46	221,82	443,64	665,46	887,28	1109,10	1330,92	1552,74	1774,56

VELOCITY/FLOW RATE CONVERSION TABLES

Flow Rate [gpm] = (Velocity [f/s] x ID²) / 0.4085 Velocity [f/s] = (Flow Rate [gpm] x 0.4085) / ID² Velocity 0,16 0,33 0,5 0,7 1,6 2,6 3,3 6,6 9,8 13,1 16,4 20 26,2 ft/sec 23 0,05 0,1 0,5 0,8 3 4 5 6 7 8 m/s 0,15 0,2 1 2 D DN Flow Rate US-gpm [inch] [mm] 1/2 15 0,14 0,28 0,42 0,56 1,40 2,25 2,81 5,62 8,43 11,24 14,05 16,85 19,66 22,47 3/4 20 0,25 0,50 0,75 1,00 2,50 4,00 4,99 9,99 14,98 19,98 24,97 29,96 34,96 39,95 1 25 0,39 0,78 1,17 1,56 3,90 6,24 7,80 15,61 23,41 31,21 39,01 46,82 54,62 62,42 1 1/4 32 0,64 1.28 1,92 2,56 6,39 10,23 12,78 25,57 38,35 51.14 63,92 76,70 89 49 102,27 $1 \frac{1}{2}$ 40 1,00 2.00 3,00 4,00 9 99 15,98 19,98 39,95 59,93 79.90 99.88 119,85 139,83 159,80 2 50 1.56 3.12 4,68 6,24 15,61 24,97 31.21 64.42 93,63 124.85 156.06 187.27 218 48 249.69 105,49 2 1/2 65 2.64 5.27 7 91 10,55 26,37 42,20 52.75 158.24 210.99 263.74 316.48 369,23 421.98 80 4,00 15,98 39,95 63,92 79,90 159,80 239,70 479,41 559,31 639,21 3 7,99 11,99 319,60 399,50 6,24 24,97 62,42 99,88 124,85 249,69 998,76 4 100 12,48 18,73 374,54 499,38 624,23 749,07 873,92 5 39,01 97,54 156,06 1560,56 125 9,75 19,51 29,26 195,07 390,14 585,21 780,28 975,35 1170,42 1365,49 6 150 14,05 28,09 42,14 56,18 140,45 224,72 280,90 561,80 842,70 1123,61 1404,51 1685,41 1966,31 2247,21 8 200 24,97 49,94 74,91 99,88 249,69 399,50 499,38 998,76 1498,14 1997,52 2496,90 2996,28 3495,66 3995,04 10 225 31,60 63,20 94,80 126,41 316,01 505,62 632,03 1264,06 1896,08 2528,11 3160,14 3792,17 4424,20 5056,23 12 300 48,94 97,88 146,82 195,76 489,39 783,03 978,79 1957,57 2936,36 3915,14 4893,93 5872,71 6851,50 7830,28

VELOCITY/FLOW RATE CONVERSION TABLES

То о	convert	Into	Multiply by
VOLUME	US Gallon	fl. oz. (U.S.)	128
		cubic inch	231
		cubic ft.	134
		liter	3.785
		cubic meter	000.379
		Imp. gallon	833
		pound	833
	Imperial Gallon	U.S. gallon	12
	Cubic Foot	U.S. gallon	748
		Cubic meter	00.283
	Liter	U.S. gallon	2.642
	Cubic meter	cubic ft.	35.314
		U.S. gallon	2.642
LENGTH	Inch	centimeter	25.400
	Foot	meter	3.048
	Yard	meter	9.144
	Mile	kilometer	16.093
WEIGHT	Ounce	gram	283.495
	Pound	gram	45.359
FLOW RATE	US gallon per minute (gpm)	liter per second	0.063
	US gallon per minute (gpm)	cubic meter per hr.	227
	UK gallon per minute (gpm)	cubic meter per hr.	273
PRESSURE	Atmosphere	bar	10.133
	Psi [lb/inch2]	bar	00.689
	Pascal [Newton/m2]	bar	10-5
	MegaPascal	bar	10
TEMPERATURE	Kelvin [°K]	celsius [°C]	°C = °K - 273
	Fahrenheit [°F]	celsius [°C]	°C = (°F - 32) x 5/9

PH MEASUREMENT

THTTEASOREMENT	
Definition	pH is defined as the negative logarithm of the hydrogen ion activity, aH+, in a solution. So: pH = - log(aH+)
pH Measuring technology	pH is measured using a setup with two electrodes: the measuring electrode and the reference electrode. These two electrodes are often combined into one which is defined as a "combined electrode". All pH electrodes supplied by FLS are "combined". When the two electrodes are immersed in a solution, a small galvanic cell is established. The potential developed is dependent on both electrodes. The measured voltage can be expressed by the Nernst equation in the following way: E = Emeas - Eref = E0 - (2,303RT/F)pH where E = Measured voltage Emeas = Voltage of measuring electrode Eref = Voltage of reference electrode E0 = standard electrode potential R = Gas Constant T = Absolute Temperature F = Faraday's constant Then, it means that relationship between pH and E is linear correlated to the temperature. The value of the slope at 25°C is 59,18 mV/pH. It is around 54 mV/pH at 5°C and around 62mV/pH at 40°C. At 100°C slope increases till around 74mV/pH.

pH technical terms

Calibration

Determination of offset and slope of a pH system. In order to evaluate both electrode features calibration has to be performed for two pH points. A calibration on sample solution can be done in order to consider chemical species which can affect pH measurement.

Calibration solution (Buffers)

A solution at known pH value which is used to calibrate the pH system. Calibration solutions are affected by temperature. The temperature dependency of the buffers is well known. Following the dependency of buffers supplied by FLS:

°C	°F	pH buffer solution 4,01	pH buffer solution 7,00	pH buffer solution 10,00
0	32	4,01	7,12	10,31
5	41	4,00	7,09	10,24
10	50	4,00	7,06	10,17
15	59	4,00	7,04	10,11
20	68	4,00	7,02	10,05
25	77	4,01	7,00	10,00
30	86	4,01	6,99	9,95
35	95	4,02	6,98	9,92
40	104	4,03	6,97	9,88
45	113	4,04	6,97	9,85

150

Reference temperature

pH readings are often referenced to a specific temperature, usually 25°C, for comparative purposes.

Automatic temperature compensation

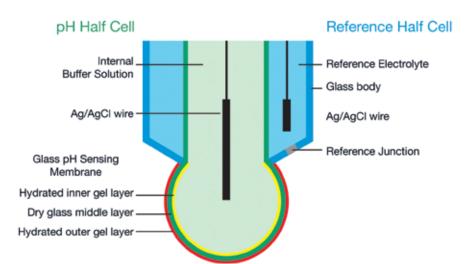
Algorithms for automatic conversion of sample pH to a reference temperature.

This function considers the variation of pH slope with temperature.

pH electrode operating principle

The pH electrode is a very high-impedance galvanic cell in which the potential developed between the pH half-cell and the reference half-cell is the sum of various potentials. Figure A shows a typical glass combination pH electrode in which the pH half-cell and the reference half-cell are combined into a single design.

Ideally, all of the potentials are constant, except for one generated on the outer hydrated gel layer that depends on the pH of the sample according to the Nernst equation.


Real electrodes differ from an ideal electrode due to various factors, including:

1) manufacturing tolerances,

2) electrode aging,

3) electrode conditioning and cleaning.

All pH meters allow for calibration or standardization of the electrode to compensate for the above effects. A standard calibration involves measuring the response of the electrode in two pH buffer solutions with well known pH values and creating a linear map of the electrode response to these two points. This results in offset and slope correction factors, where the offset is the mV rending at pH 7 and the slope is the change in mV response per pH unit, usually expressed in mV/pH is a percentage of the ideal slope of the electrode (59.16 mV/pH at 25 °C).

151

ORP MEASUREMENT

ORP MEASUREMENT	
Definition	Oxidation-Reduction Potential (O.R.P.) is a measurement of the tendency of a solution to oxidize or to reduce what can be in contact with it. A oxidant solution is a liquid which tends to gain electrons oxidizing what is in contact reducing itself. A reductant solution is a liquid which tends to lose electrons reducing what is in contact oxidizing itself.
ORP Measuring technology	 O.R.P. electrode produces a voltage as well as pH electrode. In this case, measurement is not affected by hydrogen ions only, but it's affected by all chemical species which can give or receive electrons. Although O.R.P. is affected by temperature and in principle it follows Nernst equation, it's difficult to compensate measurement as usually it's unknown how many electrons are involved into RedOx reactions (in case ORP measurement is used to monitor a reaction only it's possible to determine main involved semi reaction and so it could be possible to do it). Also in ORP measurement, it's used a setup with two electrodes: the measuring electrode and the reference electrode. These two electrodes are often combined into one which is defined as a "combined electrode". All ORP electrodes supplied by FLS are "combined". When the two electrodes are immersed in a solution, a small galvanic cell is established. The potential developed is dependent on both electrodes and usually it moves from -1000mV up to +1000mV.
	Although it's a no-specific measurement, it can be very useful to monitor and control activity of specific compounds. Applications that use ORP for monitoring and controlling oxidation-reduction reactions include cyanide destruction, dechlorination, nitrite and hydrosulfite oxidation, chromate reduction, hypochlorite bleach production, and chlorine and chlorine dioxide scrubber monitoring using bisulfite. Concentration measurement with ORP is problematic, but ORP can be used in some cases for leak detection to evaluate the presence of an oxidant or reductant. Finally, ORP is measured, in some instances, for the control of biological growth. The principle behind these applications is that a minimum ORP value will successfully destroy microorganisms. This approach has been used in the chlorination of swimming pools and cooling towers. It should be noted that both of these applications also include pH control.
ORP technical terms	Calibration Determination of offset of a ORP system. The slope of ORP electrode is less variable than pH electrode since the ORP sensors are made of noble (more or less non-reactive) metals such as Platinum (suggested for strong oxidants contained chlorides and in general for RedOx titration), Gold (preferred for strong acid solution and in presence of iron and chrome) or rarely Silver and do not change very much with use. Response times of these sensors depends on the surface area, size and construction, and how clean the sensor is. For most ORP applications, the absolute accuracy is less important than the speed and relative changes measured in the system. Many procedures and specifications call for target ORP values with tolerances of ±25 mV, or ±50 mV, or they specify changes in ORP such as a 400 mV drop in the value with a target end point value. Since ORP has a variety of uses with methods that have their own specialized target readings or reading changes that are based on experience, we can not elaborate on these in detail. It is sufficient to say the precision required for pH and other electrochemical measurements typically does not apply for ORP, and so calibration for ORP electrodes and meters is not so common.

Calibration solution

A solution at known ORP value which is used to check the ORP system. In principle, as explained previously, the absolute ORP value is not so important and then the use of a ORP calibration solution can applied just for checking purpose.

The main use of a calibration solution or a ORP reference solution is just to simplify comparison purpose.

In other words, a offset evaluation can be necessary in case of electrode replacement when the new probe measures a different value comparing to the former electrode and so a calibration can be necessary to align the new value to the former one.

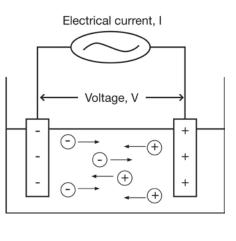
If for example, a method calls for a target value of 410 mV which was defined with your previous electrode and instrument, the new electrode with the same instrument may read 425 mV in the same liquid. Using the calibration or, more properly, the offset adjustment, this 15 mV difference can be eliminated avoiding confusion. Then when the other readings occur, they can be comparable easily with those from the old electrode.

ORP electrode operating principle

The principle of ORP measurement is the use of an inert metal electrode (platinum, sometimes gold, rarely silver), which, due to its low resistance, will give up electrons to an oxidant or accept electrons from a reductant. The ORP electrode will continue to accept or give up electrons until it develops a potential, due to the build-up charge, which is equal to the ORP of the solution. The typical accuracy of an ORP measurement is ±5 mV. Also ORP electrode needs a reference electrode which is typically the same silver-silver chloride electrode used with pH measurement.

CONDUCTIVITY MEASUREMENT

Definition


Conductivity is the ability of a solution to pass an electric current. In solutions the current is carried by cations and anions. The solution capability to conduct electricity depends on a number of factors:

- Concentration
- Mobility of ions
- Valence of ions
- Temperature

All substances have a different level of conductivity. In aqueous solutions the level of ionic strength varies from the low conductivity of ultrapure water to the high conductivity of concentrated chemical samples.

Conductivity measuring technology

Conductivity may be measured by applying an alternating electrical current (I) to two electrodes immersed in a solution and measuring the resulting voltage (V). During this process, cations migrate to the negative electrode while anions to the positive electrode and the solution acts as an electrical conductor.

153

Conductivity technical terms

Resistance

The resistance of the solution (R) can be calculated using Ohm's law (V = R x I). R = V/I

where:

V = voltage (volts)

I = current (amperes)

R = resistance of the solution (ohms)

Conductance

Conductance (G) is defined as the reciprocal of the electrical resistance (R) of a solution between two electrodes.

<u>G</u> = 1/R

The conductivity meter in fact measures the conductance, and displays the reading converted into conductivity.

Cell constant

This is the ratio of the distance (d) between the electrodes to the area (a) of the electrodes.

K = d/a

K = cell constant (cm-1)

a = effective area of the electrodes (cm2)

d = distance between the electrodes (cm)

Conductivity

Electricity is the flow of electrons. This indicates that ions in solution will conduct electricity. Conductivity is the ability of a solution to pass current. The conductivity reading of a sample will change with temperature. $C = G \times K$

C= conductivity (S/cm)

G = conductance (S), where G = 1/R

K = cell constant (cm-1)

Resistivity

This is the reciprocal of the conductivity value and is measured in ohm•cm. It is generally limited to the measurement of pure water, the conductivity of which is very low.

Calibration

Determination of the cell constant required to convert conductance readings into conductivity results.

Standard solution

A solution of known conductivity that is used to calibrate the conductivity system.

Reference temperature

Conductivity readings are often referenced to a specific temperature, typically 18°C, 20°C or 25°C, for comparative purposes.

Automatic temperature compensation

Algorithms for automatic conversion of sample conductivity to a reference temperature.

Temperature compensation factor

Factor used for automatic compensation. Usually is considered as a % /°C.

For UPW application, on FLS instrumentation, is available a special correlation based on ASTM D1125-19.

Total Dissolved Solids (TDS)

This is the measure of the total concentration of ionic species of a sample. It is relative to the standard solution used to calibrate the instrument or to the salt solution to which user has decided to refer.

TDS factor

Conductivity readings are converted to TDS readings by multiplication with a known mathematical factor. The factor depends on the reference compound (usually a salt) used to prepare the standard or on the reference material considered. For example: seawater contains a lot of different salts but mainly NaCl, so user could refer just to it. Following few examples of factor:

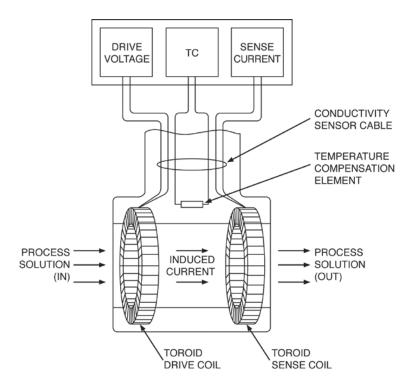
Reference salts	Conversion factor range
NaCl	0,47-0,50
KCI	0,50-0,57
442 (40%NaSO4+40%NaHCO3+20%NaCl)	0,65-0,85

Conductivity operating principle

2-electrodes conductivity sensor

A 2-electrodes conductivity sensor is made up of an insulating material with 2 electrodes embedded. Electrodes can be made in platinum, graphite, stainless steel or other metallic materials. These metal contacts work as sensing elements and are placed at a fixed distance apart to make contact with a solution whose conductivity is to be determined. The distance between the sensing elements, as well as the surface area of the metallic piece, determine the electrode cell constant, defined as relationship distance/area. The cell constant is a critical parameter affecting the conductance value produced by the cell and handled by the electronic circuit.

A cell constant of 1.0 will produce a conductance reading approximately equal to the solution conductivity. For solutions of low conductivity, the sensing electrodes can be placed closer reducing the distance between them and producing cell constants of 0.1 or 0.01. This will raise the conductance reading by a factor of 10 to 100 to offset the low solution conductivity and give a better signal to the conductivity meter. On the other hand, the sensing electrodes can be placed farther to create cell constants of 10 for measurement of high conductive solutions. This also produces a conductance reading by a factor of 10.


In order to produce a measuring signal acceptable to the conductivity meter, it is highly important that the user choose a conductivity electrode with a cell constant appropriate for his sample. The table below lists the optimum conductivity range for cells with different cell constants.

Cell Constant	Optimum Conductivity Range
0.01	0.055 - 20 µS/cm
0.1	0.5 - 200 µS/cm
1.0	0.01 - 2 mS/cm
10.0	1 - 200 mS/cm

Conductivity technical terms

Inductive toroidal conductivity instrument

The inductive toroidal conductivity sensor is made up of two high-grade toroids (coils) which are incorporated concentrically and adjacent to one another in a non-conductive body. The primary coil is excited with a sinusoidal alternating voltage creating a changing magnetic field. This changing magnetic field causes the ions in the solution to move through the center of the toroid. This ion motion is equivalent to an AC current flowing through the center of the toroid. The AC current produces an AC current in the sensing coil that is proportional to the conductivity of the solution. Ideally the signal in the sensing coil should be due to the ion motion only and not due to the changing magnetic field created by the primary coil. For this reason good magnetic shielding is needed between the coils.

NOTES

NOTES

NOTES
