

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according toArticle 29 of the Regulation (EU) No 305/2011 of the European Parliamentand of the Council of 9 March 2011



### European Technical Assessment ETA-12/0054 of 25/03/2015

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:ETA-Danmark A/S

Trade name of the construction product:

ROCKPANEL Xtreme 8 mm finish Colours/Rockclad and ROCKPANEL Xtreme 8 mm finish ProtectPlus

Product family to which the above construction product belongs:

Prefabricated mineral wool boards with organic or inorganic finish and with specified fastening system

Manufacturer:

ROCKWOOL B.V. Konstruktieweg 2 NL-6045 JD Roermond Tel. +31 475 353 000 Fax +31 475 353 550

**Manufacturing plant:** 

ROCKWOOL B.V. / ROCKPANEL Group Konstruktieweg 2 NL-6045 JD Roermond

This European Technical Assessment contains:

33 pages including 6 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: European Assessment Document (EAD) no. EAD 090001-00-0404 for Prefabricated compressed mineral wool boards with organic or inorganic finish and with specified fastening system, edition May 2014.

This version replaces:

The previous ETA with the same number and validity from 2012-04-16 to 2017-04-16

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

# 1 Technical description of product and intended use

## Technical description of the product General

ROCKPANEL Xtreme 8 mm finishes Colours/Rockclad and ROCKPANEL Xtreme 8 mm finish ProtectPlus is prefabricated compressed mineral wool boards with thermo-setting synthetic binders. The boards are fastened to timber, aluminium or steel subframes. Fastening to the timber subframe is carried out with corrosion resistant nails or screws or by bonding (with an intermediate ROCKPANEL strip with specified finish). Fastening to aluminium subframe is carried out with corrosion resistant rivets or by bonding. Fastening to steel subframe is carried out with corrosion resistant rivets

Mechanical fasteners, gaskets, adhesives with primers, strips for bonding and aluminium profiles are specified by the ETA-holder.

The ROCKPANEL Xtreme Colours panels are surface treated with a four-layer water-borne polymer emulsion paint on one side, in a range of colours.

The ROCKPANEL Xtreme ProtectPlus panels are surface treated with a four-layer water-borne polymer emulsion paint on one side, which has been provided with an extra anti-graffiti clear coat as a fifth layer on the colour paint.

The physical properties of the panels are indicated in table 1.

Table 1

| Property                           | Value                             |
|------------------------------------|-----------------------------------|
| Thickness and tolerances           | $8 \pm 0.5$ mm                    |
| Length, max                        | 3050 mm                           |
| Width, max                         | 1250 mm                           |
| Density, nominal and tolerances    | $1200 \pm 100 \text{ kg/m}^3$     |
| Bending strength, length and width | $f_{05} \ge 34,5 \text{ N/mm}^2$  |
| Modulus of elasticity              | $m(E) \ge 5260$                   |
|                                    | N/mm <sup>2</sup>                 |
| Thermal conductivity EN 10456      | 0,43 W/(m • K)                    |
| Cumulative dimensional change      | Length: 0,0,096                   |
|                                    | %                                 |
|                                    | Width: 0,0,098 %                  |
| Coefficient of thermal expansion,  | $\alpha = 11,0$                   |
| length and width                   | 10 <sup>-6</sup> °K <sup>-1</sup> |
| Coefficient of moisture expansion  | 0,324 mm/m                        |
| 23 °C/50 %RH to 95 %RH             | after 4 days                      |

#### **Finishes**

The finish is indicated in table 2. The paints are provided in a number of colours.

| Table 2                        | Table 2 Finish ROCKPANEL Xtreme boards      |                    |  |  |  |  |
|--------------------------------|---------------------------------------------|--------------------|--|--|--|--|
| ROCKPA                         | ROCKPANEL Xtreme Colours:   Colourpaint [a] |                    |  |  |  |  |
| (water-box                     | ne polymer emulsion                         |                    |  |  |  |  |
| paint)                         |                                             |                    |  |  |  |  |
| ROCKPA                         | NEL Xtreme                                  | Clear coat pure or |  |  |  |  |
| ProtectPlu                     | s:                                          | Clear coat with    |  |  |  |  |
| (water-box                     | ne polymer emulsion                         | wood texture       |  |  |  |  |
| paint with anti-graffiti clear |                                             | "Woods" like:      |  |  |  |  |
| coat)                          |                                             | Teak, Alder,       |  |  |  |  |
|                                |                                             | Cherry,            |  |  |  |  |
|                                |                                             | Mahogany,          |  |  |  |  |
|                                |                                             | Merbau and Oak     |  |  |  |  |
|                                |                                             | or with metallic   |  |  |  |  |
|                                |                                             | particles          |  |  |  |  |

[a] Also available with a water-borne polymer emulsion primer for painting on the building site

The colourfastness of the panels is indicated in table 3.

| Table 3         Colourfastness ROCKPANEL Colours |                        |  |  |  |
|--------------------------------------------------|------------------------|--|--|--|
| Property Value (ISO 105 A02)                     |                        |  |  |  |
| Colour fastness after ROCKPANEL Xtreme           |                        |  |  |  |
| 5000 hours artificial                            | Colours: 3-4 or better |  |  |  |
| weathering ROCKPANEL Xtreme                      |                        |  |  |  |
| (TR010 Class S) ProtectPlus: 4 or better         |                        |  |  |  |

#### **Subframes**

The panels are attached to the building by fixing to a sub-frame of aluminium, steel or wood.

The vertical battens should have a minimum thickness of 28 mm (solid wood).

Also LVL battens (Laminated Veneer Lumber) with a minimum thickness of 27 mm, according to EN 14374, can be used (Ultralam R, CE 0672-CPD-I)

#### Appropriate preservative treatment of subframes

Use the appropriate part of EN 335 to identify the "use class" of a given service environment and geographical location. Table 1 in EN 335 will assist in determining the biological agents that can attack timber in certain situations. The user can then consider the type and duration of performance required select an appropriate level of durability and ensure that the timber or wood-based product specified has either, as a natural (see EN 350-2) or an acquired characteristic durability as the result of appropriate preservative treatment (see EN 351-1).

The minimum thickness of the vertical aluminium profiles is 1,5 mm. The aluminium is AW-6060 according to EN 755-2. The  $R_{\rm m}/R_{\rm p0,2}$  value is 170/140 for profile T6 and 195/150 for profile T66.

The minimum thickness of the vertical steel profiles is either 1,0 mm [a] ( steel quality is S320GD +Z EN 10346 number 1.0250, or equivalent for cold forming), or 1,5 mm [a] (steel quality EN 10025-2:2004 S235JR number 1.0038).

[a] The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment.

The Zinc Life Time Predictor can be used to calculate the Corrosion Rate in µm/y for a Z coating: <a href="http://www.galvinfo.com:8080/zclp/">http://www.galvinfo.com:8080/zclp/</a> [copyright The International Zinc association].

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

#### **Joints**

#### **Aluminium profiles**

The horizontal joints between the panels can be open in the case of ROCKPANEL strips on the battens, aluminium rail supports or the bonded application on ROCKPANEL strips.

The horizontal joints between the panels are made with a ROCKPANEL "A" extruded aluminium chair profile or equivalent in the case of panels mechanically fixed on timber battens. The chair profile has an overlap of at least 15 mm on the board above the profile. See annex

#### Foam gasket

A 3 mm thick EPDM foam gasket (self-adhering backside) is fixed to the timber battens. If the horizontal joint is closed with an aluminium chair profile, the vertical joint is backed with the 60 mm wide gasket and for the intermediate battens the 36 mm gasket is used.

In the case of open horizontal joints the width of the gasket 15 mm at both sides wider than the batten.

#### **Fasteners**

The panels are mechanically fixed or bonded either to vertical timber (with intermediate ROCKPANEL strips and specified finish) or aluminium subframe. The mechanical fastening to steel subframe is carried out with stainless steel rivets. The mechanical fastening to timber battens is carried out with either ROCKPANEL stainless steel screws 4,5× 35 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels or ROCKPANEL ring shank nails 2,7/2,9 × 32 mm or 40 mm no 1.4401 or 1.4578 (EN 10088) with heads in the colour of the panels.

Fastening to aluminium is carried out with aluminium EN AW-5019 (AIMg5) rivets, head diameter 14 mm, shank diameter 5 mm, head colour coated. The mechanical fastening to steel subframe is carried out with either EN 10088 (no 1.4578) rivets, head diameter 15 mm, body diameter 5 mm, head colour coated, or EN 10088 (no 1.4567) rivets, head diameter 14 mm, body diameter 5 mm, head colour coated.

For correct fixing, a riveting tool with rivet spacer must be used, see annex 3 Table 8.3.

Fastening to steel is carried out with stainless steel EN 10088 no 1.4578 rivets head diameter 15 mm or EN 10088 no. 1.4567 rivets, head diameter 14 mm, shank diameter 5 mm, head colour coated. (for correct fixing, a riveting tool with rivet spacer must be used), see Table 5 and Table 8.3

Bonding to both timber (with intermediate ROCKPANEL strips and specified finish) and aluminium rails is carried out with ROCKPANEL Tack-S adhesive. The bonding shall be carried out in accordance with the manufacturer's instructions. See annex 1. Bonding is only allowed on vertical subconstructions with a drained cavity for ventilated applications.

The maximum fixing distances, hole diameter and design value of the axial load appears from annex 2, tables 5, 6 and 7.

The installation method with the use of fixed points and moving points appears from table 7 and figure 8.

# 2 Specification of the intended use in accordance with the applicable EAD

The boards are intended for external cladding and for fascias and soffits. The cladding on vertical timber battens with mechanically fixed boards can be carried out with or without ventilated cavities at the back. The cladding on vertical timber battens provided with mechanically fixed ROCKPANEL strips (with specified finish) with the bonding system must be carried out with a ventilated cavity at the back. The cladding on vertical aluminium or steel support shall be carried out with a ventilated cavity at the back. See annex 1.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the kit of 50 years.

In additition, for aluminium support systems intended to be used for facades:

In some member states national climate conditions may reduce the service life of the aluminium support system to 35 years or more.

An additional assessment of the aluminium support system might be necessary to comply with Member State regulations or administrative provisions.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### Characteristic **Assessment of characteristic** 3.2 Safety in case of fire (BWR 2) Reaction to fire The aluminium profiles are classified as **Euroclass A1** Classification of panels: See table 4 3.3 Hygiene, health and the environment (BWR 3) The kit does not contain/release dangerous substances Dangerous substances specified in TR 034, dated April 2013\*), except Formaldehyde concentration 0,0105 mg/m³ Formaldehyde class E1 The used fibres are not potential carcinogenic No biocides are used in the ROCKPANEL boards No flame retardant is used in the boards No cadmium is used in the boards. Water vapour permeability **Xtreme Colours:** $S_d < 1,80 \text{ m}$ at 23°C and 85 %RH **Xtreme ProtectPlus:** S<sub>d</sub> < **3,5 m** at 23°C and 85 % RH The designer shall consider the relevant needs for ventilation, heating and insulation to minimise condensation in service. Water permeability incl. joints for non-No Performance determined ventilated applications

#### 3.4 Safety and accessibility in use (BWR 4)

In absence of national regulations the design values  $X_d$  may be calculated as indicated in the ETA (see tables 6-1 up to and including 6-8). Below is mentioned the safety factors which has been used in the calculation of the design values.

Fixing position and design value  $X_d$  of the axial load M/E/C (Middle/Edge/Corner) of mechanical fixings corresponding to the wind load resistance (load acting perpendicular to the façade)

#### Remark:

Design value  $X_d$  obtained by dividing the characteristic value  $X_k$  by a partial factor  $\gamma_M : X_d = X_k / \gamma_M$ The design value  $X_d$  of a material property can be expressed in general terms as  $X_d = \eta \times X_k / \gamma_M - \gamma_M$  ROCKPANEL = 1,6 - conversion factor  $\eta = 0.8$  (aged bending strength divided by the  $f_{05}$  (Table 9, Annex 4))

#### **ROCKPANEL** rivets:

To an aluminium subframe, design value  $X_d$ : **654/309/156 N** (Annex 2 Table 6-1 row (16))

#### **ROCKPANEL** screws:

Design value  $X_d$  depends on the modification factor  $k_{mod}$ , the strength class of the wood and the different material factors  $\gamma_M$ .

Boards to a solid timber subframe: see Annex 2 Tables 6-2 and 6-3, row (25), (26) and (27).

Strips to a solid timber subframe (bonding system): see Annex 2 Tables 6-5 and 6-6, row (21), (22) and (23).

#### **ROCKPANEL** nails:

Design value  $X_d$  depends on the modification factor  $k_{mod}$ , the strength class of the wood and the different material factors  $\gamma_M$ .

Boards to a solid timber subframe see Annex 2 Table 6-4, row (25), (26) and (27).

Strips to a solid timber subframe (bonding system): see Annex 2 Table 6-7 and Table 6-8 row (21), (22) and (23).

| Characteristic                                                                                                                                                                                         | Assessment of characteristic                                                                                                                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Shear strength mechanical fixings<br>Characteristic values                                                                                                                                             | ROCKPANEL nails: Failure load: 1325 N Deformation: 15 mm ROCKPANEL rivets: Failure load: 1722 N Deformation: 1,7 mm ROCKPANEL screws: Failure load: 1549 N Deformation: 9 mm                                                                                                                                                                                                    |  |  |
| Characteristic and design initial tensile strength Tack-S adhesive [a] Partial factor for material property γ <sub>M</sub> = 4 (tensile caused by wind load)                                           |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Conditions<br>+23°, -20°C, -40°C and +80°C                                                                                                                                                             | Contact surfaces: rear of the board onto ProtectPlus: $X_k = 6,94 \text{ N/mm}^1$ and $X_d = 1,74 \text{ N/mm}^1$ ; rear of the board onto Colours code 9Y or 7Y: $X_k = 8,30 \text{ N/mm}^1$ and $X_d = 2,08 \text{ N/mm}^1$ Rear of the board onto primer 586: $X_k = 4,58 \text{ N/mm}^1$ and $X_d = 1,15 \text{ N/mm}^1$                                                    |  |  |
| Conditions<br>+23°, -20°C, and +80°C                                                                                                                                                                   | Contact surfaces: rear of the board onto aluminium: $X_k = 5.92$<br>N/mm <sup>1</sup> and $X_d = 1.48$ N/mm <sup>1</sup>                                                                                                                                                                                                                                                        |  |  |
| For the partial load factor $\gamma_F = 1.5$ shall be taken                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Characteristic and design initial tensile strength FoamTape[a]                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Conditions<br>+23°                                                                                                                                                                                     | Contact surfaces: - rear of the board onto ProtectPlus: $X_k = X_d = 0.73 \text{ N/mm}^1$ Contact surfaces: - rear of the board onto Colours code 9Y or 7Y: $X_k = X_d = 1.17 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = X_d = 0.47 \text{ N/mm}^1$ Contact surfaces: - rear of the board onto primer 586: $X_k = X_d = 0.86 \text{ N/mm}^1$    |  |  |
| For the partial load factor $\gamma_F$ = 1.5 shall be taken                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Characteristic and design initial shear strength Tack-S adhesive [a] Partial factor for material property γ <sub>M</sub> = 40 (shear caused by permanent load) Conditions +23°, -20°C, -40°C and +80°C | Contact surfaces: rear of the board onto ProtectPlus and Colours code 9Y or 7Y: $X_k = 7,00 \text{ N/mm}^1$ and $X_d = 0,175 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 8,58 \text{ N/mm}^1$ and $X_d = 0,214 \text{ N/mm}^1$ Contact surfaces: rear of the board onto primer 586: $X_k = 7,69 \text{ N/mm}^1$ and $X_d = 0,192 \text{ N/mm}^1$ |  |  |
| For the partial load factor $\gamma_F = 1.5$ shall be taken                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Characteristic and design initial shear strength FoamTape[a] Partial factor for material property $\gamma_M=20$ (shear caused by temporary load)                                                       |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Condition<br>+23°                                                                                                                                                                                      | Contact surfaces: rear of the board onto ProtectPlus and Colours code 9Y or 7Y: $X_k = 1,00$ ; $X_d = 0,05 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 0,99 \text{ N/mm}^1$ ; $X_d = 0,05 \text{ N/mm}^1$ Contact surfaces: rear of the board onto primer 586: $X_k = 0,85 \text{ N/mm}^1$ ; $X_d = 0,04 \text{ N/mm}^1$                         |  |  |

| Characteristic                                                                                                                                                           | Assessment of characteristic                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deformation shear declared Tack-S adhesive                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |
| Conditions +23°, -40°C, -20°C, and +80°C:                                                                                                                                | Contact surfaces: rear of the board onto - ProtectPlus and Colours code 9Y or 7Y: 7,5 to 12,7 mm Contact surfaces: rear of the board onto - aluminium: 9,0 to 12,2 mm Contact surfaces: rear of the board onto - primer 586: 9,4 to 12,2 mm                                                                                    |
|                                                                                                                                                                          | F                                                                                                                                                                                                                                                                                                                              |
| Impact resistance For definition of use category see Annex 6 Table 12                                                                                                    |                                                                                                                                                                                                                                                                                                                                |
| Panels without a horizontal joint                                                                                                                                        | Hard body impact - steel ball 0,5 kg (1J): Categoy IV Hard body impact - steel ball 0,5 kg (3J): Category III, II and I Hard body impact - steel ball 1 kg (10J): Category II and I Soft body impact 3 kg (10J): Category IV and III Soft body impact 3 kg (60J): Category II and I Soft body impact 50 kg (300J): Category II |
| Panels with a horizontal joint ready accessible and vulnerable to impacts                                                                                                | Hard body impact - steel ball 0,5 kg (1J): Category IV<br>Hard body impact - steel ball 0,5 kg (3J): Category III, II and<br>I                                                                                                                                                                                                 |
| Dimensional stability                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                |
| Cumulative dimensional change % Coefficient of thermal expansion 10 <sup>-6</sup> °K <sup>-1</sup> Coefficient of moisture expansion 42% RH difference after 4 days mm/m | Length: 0,096 / Width: 0,098<br>Length11,1 / Width: 10,8<br>Length: 0,320 / Width: 0,328                                                                                                                                                                                                                                       |
| W' 11 1 · · · MEG                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                |
| Wind load resistance M/E/C Average strength, N                                                                                                                           | Rivets: 1449 / 617 / 311(according to Annex 2 Table 6-1) Screws: 1105 / 482 /236 (according to Annex 2 Table 6-2 and Annex A-3 Table 6-3) Nails: 1009 / 627 / 397 (according to Annex 2 Table 6-4)                                                                                                                             |
| Average failure load N/m²                                                                                                                                                | Rivets: 2567 / 2769 / 2958 (according to Annex 2 Table 6-1)<br>Screws: 1992 / 2161 / 2243 (according to Annex 2 Table 6-2)<br>Nails: 2637 / 4131 / 5162 (according to Annex 2 Table 6-4)                                                                                                                                       |
| Mechanical resistance of panels                                                                                                                                          | See section 1, table 1                                                                                                                                                                                                                                                                                                         |
| Resistance to Hygrothermal cycles                                                                                                                                        | Pass                                                                                                                                                                                                                                                                                                                           |
| Immersion in water without UV                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |
| 21 Days                                                                                                                                                                  | Characteristic tensile strength for contact surfaces: rear of the board onto ProtectPlus and Colours code $9Y / 7Y$ : $X_k = 2,80 \text{ N/mm}^1$ Contact surfaces rear of the board onto primer 586: $X_k = 5,44 \text{ N/mm}^1$ Contact surfaces: rear of the board onto aluminium: $X_k = 3,12 \text{ N/mm}^1$              |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                |

| Characteristic    | Assessment of characteristic                                                                                                                                                                                                                                                                                             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42 days           | Characteristic tensile strength for contact surfaces: rear of the board onto ProtectPlus and Colours code 9Y / 7Y: $X_k = 2,22$ N/mm <sup>1</sup> Contact surfaces: rear of the board onto primer 586: $X_k = 4,73$ N/mm <sup>1</sup> Contact surfaces: rear of the board onto aluminium: $X_k = 2,58$ N/mm <sup>1</sup> |
| Humidity and NaCl | Characteristic tensile strength for contact surfaces: rear of                                                                                                                                                                                                                                                            |

| Humidity and NaCl            | Characteristic tensile strength for contact surfaces: rear of     |
|------------------------------|-------------------------------------------------------------------|
|                              | the board onto aluminium: $X_k = 6.03 \text{ N/mm}^1$             |
| Humidity and SO <sub>2</sub> | Characteristic tensile strength for contact surfaces: rear of the |
|                              | board onto                                                        |
|                              | aluminium: $X_k = 6,67 \text{ N/mm}^1$                            |
|                              |                                                                   |

# 3.7 Sustainable use of natural resources (BWR 7)

No performance determined

3.8 Aspects of durability

Resistance to Xenon Arc exposure

**Pass** 

#### Table 4 Reaction to fire classification

The panels have been classified in accordance with EN 13501-1 with the following parameters:

| Table 4 Euroclass classification of different constructions with ROCKPANEL boards |                                                                   |                                           |                             |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|-----------------------------|--|--|
| Fixing                                                                            | Ventilated or non-ventilated                                      | vertical wooden subframe                  | vertical aluminium subframe |  |  |
| method                                                                            |                                                                   | Durable Colours and D                     | ourable ProtectPlus         |  |  |
|                                                                                   | Non-ventilated.                                                   | B-s1,d0                                   |                             |  |  |
|                                                                                   | Cavity filled with mineral wool                                   | closed horizontal joint                   |                             |  |  |
|                                                                                   | Ventilated with EPDM gasket on                                    | B-s2,d0                                   |                             |  |  |
|                                                                                   | the battens [a] [d]                                               | open 6 mm horizontal joint                |                             |  |  |
| mechanically fixed                                                                | Ventilated with 6 or 8 mm ROCKPANEL strips on the battens [b] [d] | <b>B-s2,d0</b> open 6 mm horizontal joint |                             |  |  |
|                                                                                   | Ventilated with 8 mm                                              | B-s1,d0                                   |                             |  |  |
|                                                                                   | ROCKPANEL strips on the battens                                   | open 6 mm horizontal joint                |                             |  |  |
|                                                                                   | [b]                                                               | for finish white and black [c]            |                             |  |  |
|                                                                                   | ventilated with 8 mm RockPanel                                    | B-s2,d0                                   |                             |  |  |
| bonded                                                                            | strips on the battens [b]                                         | open 6 mm horizontal joint                |                             |  |  |
| bonaca                                                                            | ventilated                                                        |                                           | B-s2,d0                     |  |  |
|                                                                                   | ventuated                                                         |                                           | open 6 mm horizontal joint  |  |  |

<sup>[</sup>a] width of the gasket 15 mm at both sides wider than the batten

#### Field of application

Further to the limitations described in section 1 of the ETA, the following field of application applies.

<sup>\*)</sup> In addition to the specific clauses relating to dangerous substances contained in this European technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

<sup>[</sup>b] width of the strip 15 mm at both sides wider than the batten

<sup>[</sup>c] also valid for a mixture of the the colours white and black

<sup>[</sup>d] also valid for boards with a primer finish

#### **Euroclass classification**

The classification mentioned in table 4 is valid for the following end use conditions:

#### Mounting:

- Mechanically fixed or adhered as described in table 4, which are attached to the subframe mentioned below
- Adhered to a wooden subframe with intermediate Rockpanel strips mechanically fixed
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (mechanically fixed)
- The panels are backed with min. 40 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 without an air gap between the wooden subframe (mechanically fixed non ventilated)
- The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity between the panels and the insulation (fixing method Adhesive RockPanel Tack-S)

#### Substrates:

• Concrete walls, masonry walls, timber framing

#### Insulation:

- Ventilated constructions: The battens are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of min. 28 mm between the panels and the insulation
- Non-ventilated constructions: The panels are backed with min. 40 mm mineral wool insulation with 30-70 kg/m³ between the battens and min. 50 mm with density 30-70 kg/m³ behind the battens without air gap
- Ventilated construction and fixing method adhesive Rockpanel Tack-S: The panels are backed with min. 50 mm mineral wool insulation with density 30-70 kg/m³ according to EN 13162 with a cavity of of min. 36 mm between the panels and the insulation
- Results are also valid for all greater thickness of mineral wool insulation layer with the same density and the same or better reaction to fire classification

#### Subframe:

- Vertical softwood battens without fire retardant treatment, thickness minimum 28 mm
- Test results are also valid for the same type of panel

- with aluminium or steel frame
- Test results are also valid for the same type of panel with vertical LVL battens, without fire retardant treatment, thickness minimum 27 mm

#### Fixings:

- Results are also valid with higher density of the fixing devices
- Test results are also valid for the same type of panel fixed by rivets made of the same material of screws and vice versa

#### Cavity:

- Unfilled or filled with insulation of stone wool with a nominal density 30-70 kg/m³ according to EN 13162
- The depth of the cavity is minimum 28 mm
- Test results are also valid for other higher thickness of air space between the back of the board and the insulation

#### Joints:

- Vertical joints are with an EPDM foam gasket backing or Rockpanel strip backing as described in table 4 and horizontal joints can be open (ventilated constructions) or with an aluminium profile (ventilated and non-ventilated constructions)
- The result from a test with an open horizontal joint is also valid for the same type of panel used in applications with horizontal joints closed by steel or aluminium profiles

The classification is also valid for the following product parameters:

#### Thickness:

• Nominal 8 mm, individual tolerances  $\pm$  0,5 mm

#### Density

Nominal 1200 kg/m<sup>3</sup>, individual tolerances  $\pm$  100 kg/m<sup>3</sup>

#### Aspects related to the performance of the product

All materials shall be manufactured by ROCKWOOL B.V. or by subcontractors under the responsibility of ROCKWOOL B.V.

The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which describes the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not

such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

Installation details and application details for the man on site are given by ROCKWOOL B.V. / ROCKPANEL Group in the manufacturer's application guide technical dossier which forms part of the documentary material for this ETA. On every pallet label and/or on the protective film of every board the website is printed which guides the end user to the most actual information.

For non-ventilated use, the substrate shall be airtight.

The boards are in general mounted with a joint width of between 5 and 8 mm.

If the joints are to be sealed, only durable sealants should be used with a good adhesion on the edges of the boards and a good UV-stability. To prevent sticking to the subframe, a PE-film or tape can be used.

The boards for external cladding shall not be fixed over building or settlement joints. Where settlement joints are located in the building the same movements of the building and substructure shall be possible in the external cladding.

The water diffusion resistance of the boards is declared as a means for the designer to decide whether they are sufficiently vapour permeable, especially when used for cladding without ventilated cavities at the back. The designer can then establish that condensation in the entire wall as a result of water vapour diffusion will not occur or will occur only to an extent where damage is not caused during the condensation period and the wall will dry out again during the evaporation period. The designer shall consider the critical moisture content for all the integrated materials.

For non-ventilated intended use, the pressure level preceding the pressure level where leakage occurs is declared as a means for the designer to decide on the necessity of the use of a vapour control membrane.

The panels should not be taken into account when designing a timber stud wall to resist racking forces.

The holes for the fixings are drilled into the panels not less than 15 mm from a vertical edge and 50 mm from a horizontal edge (see Annex 2). The panels are fixed making sure that the screws are not over-tightened.

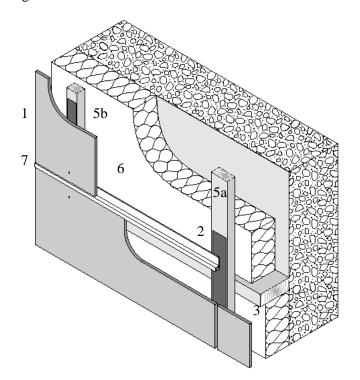
# 4 Attestation and verification of constancy of performance (AVCP)

#### 4.1 AVCP system

According to the decision 2003/640/EC of the European Commission as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1, since there is a clearly identifiable stage in their production which results in an improvement of fire performance due to the limiting of organic material.

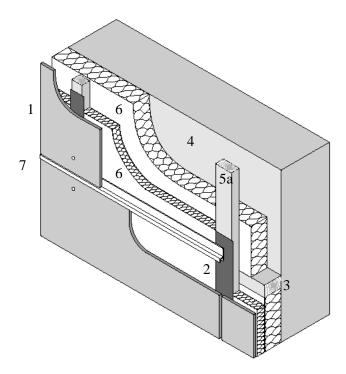
# 5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

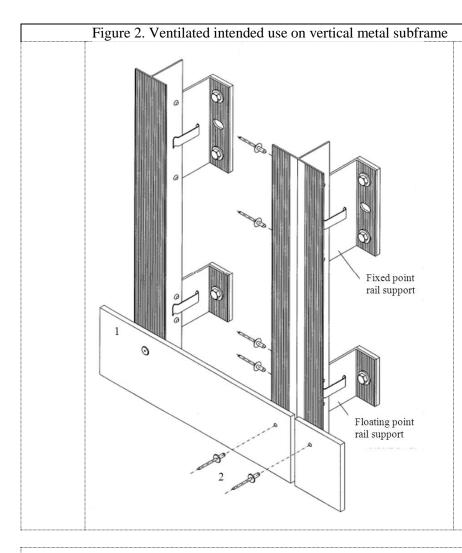
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark


Issued in Copenhagen on 2015-03-25 by

Thomas Bruun

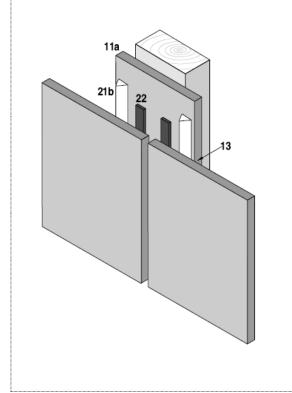
Managing Director, ETA-Danmark


# Annex 1 Pre-fabricated compressed mineral wool boards with organic or inorganic finish


Figure 1a. Ventilated intended use on vertical timber battens



- 1. Compressed mineral wool board with organic or inorganic finish
- 2. EPDM foam gasket
- 3. Timber beam
- 4. Vapour barrier
- 5. Batten: a joint and b intermediate
- 6. Insulation
- 7. ROCKPANEL "A" 8 mm extruded aluminium chairprofile or equivalent


Figure 1b. Non ventilated intended use on vertical timber battens





- 1. Compressed mineral wool board with organic or inorganic finish
- 2. Rivet fixing

Figure 3. Bonding with Tack-S. Only on ventilated intended use



- 8 mm ROCKPANEL Durable or Xtreme strip, finish 'ProtectPlus' (version without structure) or 'Colours' (with traceability code 9Y or 7Y on the rear side); strips mechanically fixed with ROCKPANEL nails or screws
- 13. Reverse of the board primered with 'MSP Transparent' or '586'
- 21b. Triangular adhesive ridge with a height of 9 mm
- 22. 'FoamTape' self adhesive on two sides 3\*12 mm

#### Figure 4 Bonding with Tack-S onto aluminum subframe

Figure 4.1 Vertical joints between boards

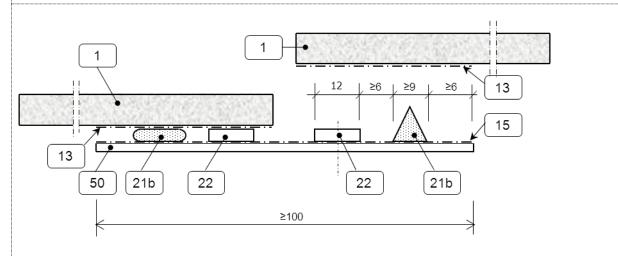
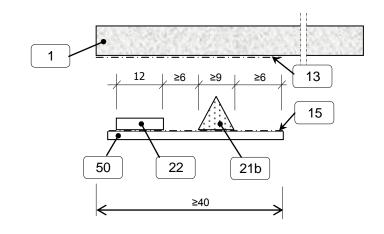




Figure 4.2 Bonding onto end profiles and onto intermediate profiles



- 1 Compressed mineral wool board with organic or inorganic finish
- 13 'Primer MSP' applied with a roller in one layer or 'primer 586'
- 15 "Prep M" one-step pretreatment
- 21b 'Tack-S' continuous triangular adhesive ridge of 9 mm
- 22 'FoamTape' self adhesive on two sides 3\*12 mm (with a release foil on one side)
- Aluminium subframe

Figure 5 Bonding with Tack-S onto wooden subframe with intermediate 8 mm ROCKPANEL strips

Figure 5.1 Vertical joints between boards

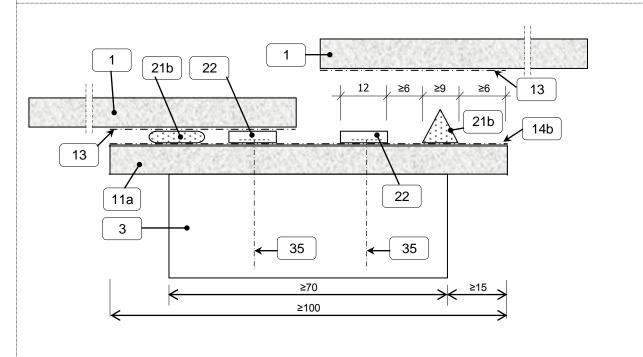
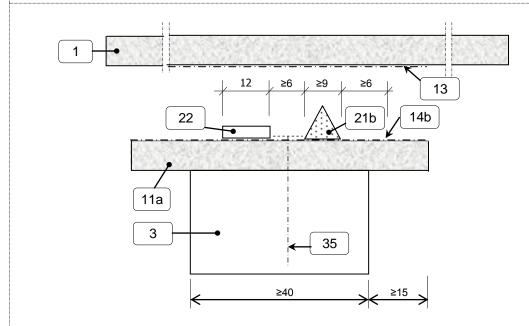
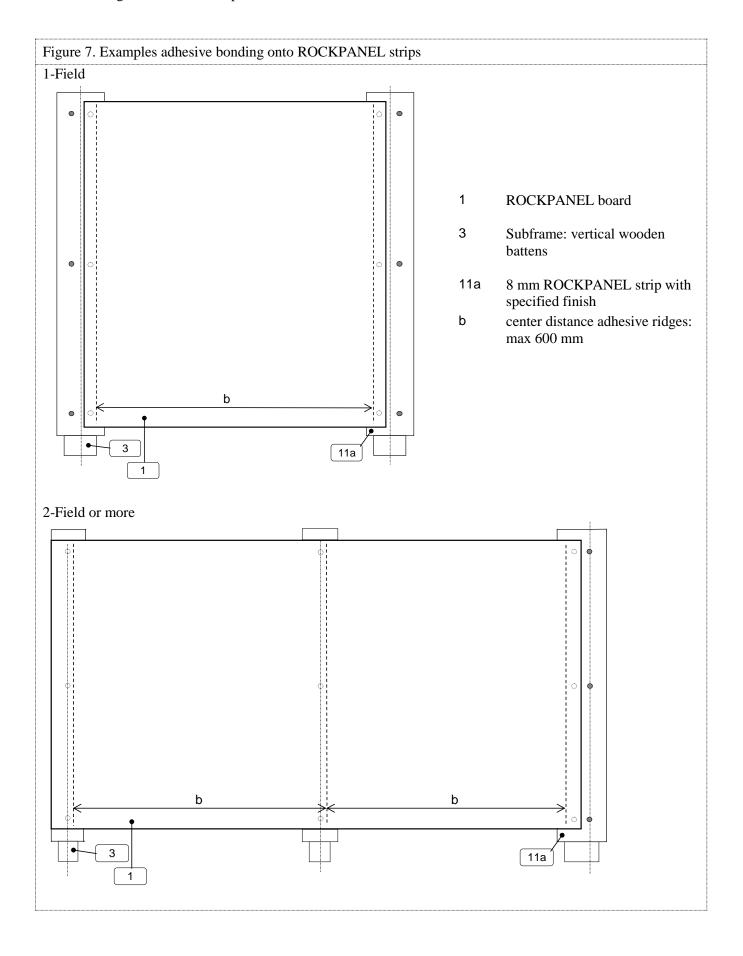





Figure 5.2 End batten and intermediate batten




- 1 Compressed mineral wool board with organic or inorganic finish
- 3 Subframe
- 11a ROCKPANEL strip composition Xtreme or Durable with specified finish mechanically fixed in accordance with Annex 2
- 13 'Primer MSP' applied with a roller in one layer or 'primer 586'
- 14b 'Liquid 1' cleaner
- 21b 'Tack-S' continuous triangular adhesive ridge of 9 mm
- 22 'FoamTape' self adhesive on two sides 3\*12 mm (with a release foil on one side)
- 35 Mechanically fixed screw or nail according to annex 3

Annex 2
Mechanically fixing of ROCKPANEL strips for adhesive bonding of ROCKPANEL boards
Minimum edge distances, fixing locations in the strip and maximum fixing distances



| Fixing distances 8 mm ROCKPANEL strips |              |         |  |  |
|----------------------------------------|--------------|---------|--|--|
| Fixing distance                        |              |         |  |  |
| Fixing                                 | $a_{ m max}$ | $a_2$   |  |  |
| Screw                                  | 400 mm       | ≥ 50 mm |  |  |
| Nail                                   | 300 mm       | ≥ 50 mm |  |  |



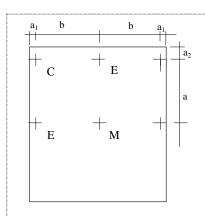



Table 6: Design axial load  $X_d = X_k / \gamma_M$  for 8 mm board fixings

C: Fixing in corner

E: Fixing at edge

M: Fixing at intermediate position

See Figure 8 for examples of possible installation methods

#### Remark

Rivet fixing only with a riveting tool with rivet spacer

| Table 5: Minimum edge distances and maximum distances between fastenings in mm |                                                            |     |    |    |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------|-----|----|----|--|--|--|
| Fixing type $b_{max}$ $a_{max}$ $a_1$ $a_2$                                    |                                                            |     |    |    |  |  |  |
| Screw                                                                          | 600                                                        | 600 | 15 | 50 |  |  |  |
| Nail                                                                           | 600                                                        | 400 | 15 | 50 |  |  |  |
| Rivet                                                                          | 600                                                        | 600 | 15 | 50 |  |  |  |
| Adhesive                                                                       | 600 Continuously applied triangular adhesive ridge of 9 mm |     |    |    |  |  |  |

| The characteristic wind load must be multiplied with $\gamma_F = 1,5$ |                        |                  |                                          |                                                                                   |                                                |                                    |                         |  |
|-----------------------------------------------------------------------|------------------------|------------------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|-------------------------|--|
| Fixing type Position M Position E Position                            |                        |                  |                                          |                                                                                   | Position C                                     |                                    |                         |  |
| Rivet [a]                                                             | according to           | table 6.1        |                                          |                                                                                   | 654 N                                          | 309 N                              | 156 N                   |  |
| Screw an                                                              | nd board fixing        | <u> </u>         |                                          |                                                                                   | see Table (                                    | see Table 6-2 row (25), (26), (27) |                         |  |
|                                                                       |                        |                  | kPanel strip [b]                         |                                                                                   | see Table (                                    | 5-3 row (25),                      | (26), (27)              |  |
| combina                                                               | tion <b>screw</b> and  | d 8 mm inte      | ermediate strips for bonding purposes    |                                                                                   | see Table 6-6 row (21), (22), (23)             |                                    |                         |  |
|                                                                       | tion <b>screw</b> and  | d 8 mm end       | strips or joint strips for bonding purp  | oses                                                                              | see Table 6-5 row (21), (22), (23)             |                                    |                         |  |
| Nail                                                                  |                        |                  |                                          |                                                                                   |                                                | 5-4 row (25),                      |                         |  |
|                                                                       |                        |                  | nediate strips for bonding purposes      |                                                                                   |                                                | 5-8 row (21),                      | . , ,                   |  |
| combina                                                               | tion <b>nail</b> and 8 | 3 mm end s       | trips or joint strips for bonding purpos | ses                                                                               | see Table (                                    | 5-7 row (21),                      | , (22), (23)            |  |
|                                                                       |                        |                  |                                          |                                                                                   |                                                |                                    |                         |  |
| Adhesiv                                                               | e [c]                  |                  | rear board onto specified finish         |                                                                                   | racteristic                                    | _                                  | axial load              |  |
| 11011051                                                              | - [-]                  |                  |                                          | axial lo                                                                          | $\operatorname{pad} X_k \operatorname{N/mm}^1$ | $X_d = X_k$                        | / γ <sub>M</sub> N/mm¹  |  |
|                                                                       |                        |                  | strips with ProtectPlus                  |                                                                                   | 7,00                                           | 0.                                 | ,175                    |  |
| shear                                                                 | -40°C, -20°C           | c, +23°C         | strips with Colours code 9Y or 7Y        | ·                                                                                 |                                                |                                    | ·                       |  |
|                                                                       | and +80°C              |                  | 'primer 586'                             |                                                                                   | 7,69                                           |                                    | ,192                    |  |
|                                                                       |                        |                  | Aluminium                                |                                                                                   | 8,58                                           |                                    | ,214                    |  |
| -40°C, -20°C, +23°C                                                   |                        | . +23°C          | strips with ProtectPlus                  |                                                                                   | 6,94                                           |                                    | ,735                    |  |
|                                                                       | and +80°C              | ,                | strips with Colours code 9Y or 7Y        |                                                                                   | 8,30                                           |                                    | 2,075                   |  |
| tensile                                                               |                        |                  | 'primer 586'                             |                                                                                   | 4,58                                           |                                    | ,145                    |  |
|                                                                       | -20°C, +23°C<br>+80°C  | C and            | Aluminium                                | 5,92                                                                              |                                                | 1                                  | ,48                     |  |
| FoamTa                                                                | pe                     | Rear boar        | d onto                                   | $ \begin{array}{c c} \text{Characteristic } X_k \\ \text{N/mm}^1 \end{array}  D $ |                                                | Design .                           | $X_d$ N/mm <sup>1</sup> |  |
| 1                                                                     | .2200                  | strips with      | s with ProtectPlus and Colours code 9Y Y |                                                                                   | 1,00                                           |                                    | ),05                    |  |
| shear                                                                 | +23°C                  | 'primer 5        | 'primer 586'                             |                                                                                   | 0,85                                           |                                    | ),04                    |  |
|                                                                       | Aluminiı               |                  | um                                       |                                                                                   | 0,99                                           |                                    | ),05                    |  |
|                                                                       |                        | Char             | acteristic $X_k$                         | and design $X$                                                                    | d N/mm <sup>1</sup>                            |                                    |                         |  |
| strips with ProtectPlus                                               |                        | n ProtectPlus    | 0,73                                     |                                                                                   |                                                |                                    |                         |  |
| 4                                                                     | 1220C                  | strips wit       | strips with Colours code 9Y or 7Y        |                                                                                   | 1,17                                           |                                    |                         |  |
| tensile                                                               | +23°C                  | 'primer 5        | orimer 586'                              |                                                                                   | 0,86                                           |                                    |                         |  |
|                                                                       |                        | Aluminiu         | m                                        | 0,47                                                                              |                                                |                                    |                         |  |
| [al Eon a                                                             | ome of fiving a six    | vetina to al vvi | th rivet spacer must be used             |                                                                                   | •                                              |                                    |                         |  |

- [a] For correct fixing, a riveting tool with rivet spacer must be used
- [b] With reduced withdrawal capacity because of the effective length  $l_{\text{eff}}$  of the threaded part
- [c] With a triangle of 9 by 9 mm, deformed to a rectangle with a thickness of 3 mm (thickness of foam tape), see annex 1

| <b>Table 6-1</b> : Characteristic axial load $X_k$ and design value of the axial load $X_d = X_k / \gamma_M$ |                                           |          |        |          |      |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|--------|----------|------|--|
| f                                                                                                            | for the combination rivet and 8 mm boards | S        |        |          |      |  |
| board thick                                                                                                  | kness                                     |          | 8 mm   |          | (1)  |  |
| location of                                                                                                  | the fixing in the board                   | M-middle | E-edge | C-corner | (2)  |  |
| pull-throug                                                                                                  | gh N                                      |          |        |          | (3)  |  |
|                                                                                                              | characteristic pull-through N             | 1308     | 810    | 540      | (4)  |  |
|                                                                                                              | material factor ROCKPANEL $\gamma_M$      | 2,0      | 2,0    | 2,0      | (5)  |  |
|                                                                                                              | design value $X_d$ of the pull-through N  | 654      | 405    | 270      | (6)  |  |
| wind suction                                                                                                 | on                                        |          |        |          | (7)  |  |
|                                                                                                              | average wind load in N/m <sup>2</sup>     | 2567     | 2769   | 2958     | (8)  |  |
|                                                                                                              | average strength N                        | 1449     | 617    | 311      | (9)  |  |
|                                                                                                              | material factor ROCKPANEL $\gamma_M$      | 2,0      | 2,0    | 2,0      | (10) |  |
|                                                                                                              | design value $X_d$ of the pull-through N  | 309      | 156    | (11)     |      |  |
| pull-out str                                                                                                 | rength                                    |          |        |          | (12) |  |
|                                                                                                              | manufacturer's declaration N              | 1300     | 1300   | 1300     | (13) |  |
|                                                                                                              | material factor aluminium $\gamma_M$      | 1,3      | 1,3    | 1,3      | (14) |  |
|                                                                                                              | design value $X_d$ of the pull-out N      | 1000     | 1000   | 1000     | (15) |  |
| design value of the axial load $X_d = X_k / \gamma_M$ for the                                                |                                           |          |        |          |      |  |
| combination <b>rivet</b> and 8 mm boards $\frac{156}{654}$                                                   |                                           |          |        |          | (16) |  |
|                                                                                                              | board span b 600                          |          |        |          |      |  |
|                                                                                                              | fixing distance a 600                     |          |        |          |      |  |

<sup>[</sup>a] For correct fixing, a riveting tool with rivet spacer must be used

|                         |                                          |                                                   |                               |                               | or the combination sol        |
|-------------------------|------------------------------------------|---------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| board thickness         | d 8 mm boards (                          | with the use of gask                              |                               | '[e]<br>mm (with the use      | of a gasket)                  |
| location of the fix     | ing in the board                         |                                                   | M-middle                      |                               | C-corner                      |
| pull-through N          |                                          | <u> </u>                                          | 1/1 1111001                   | 2 0 2 0 2 0                   | U VOIMUI                      |
|                         | c pull-through N                         | 1                                                 | 1066                          | 850                           | 617                           |
|                         | tor Rockpanelγ <sub>N</sub>              | (manufacturers                                    | 2,0                           | 2,0                           | 2,0                           |
| declaration)            |                                          |                                                   |                               | ·                             | •                             |
|                         | $e X_d$ of the pull-t                    | hrough N                                          | 533                           | 425                           | 309                           |
| wind suction            | 11 1: >7/ 0                              |                                                   | 1002                          | 21.61                         | 22.12                         |
|                         | d load in N/m <sup>2</sup>               |                                                   | 1992                          | 2161                          | 2243                          |
| average stre            |                                          |                                                   | 1105                          | 482                           | 236                           |
| declaration)            | tor Rockpanelγ <sub>N</sub>              | (manufacturers                                    | 2,0                           | 2,0                           | 2,0                           |
| design value            | $e X_d$ of the pull-t                    | hrough N                                          | 553                           | 241                           | 118                           |
| withdrawal capac        | ity                                      |                                                   |                               | <u>.</u>                      |                               |
| chara                   | cteristic withdra                        | wal capacity Fax,k,Rk                             | [b] [c] [d]                   |                               |                               |
| strength o              |                                          | $\rho_k = 320 \text{ kg/m}^3$                     | 858 [b]                       | 858 [b]                       | 858 [b]                       |
| wood (EN                | N 338) C24                               | $\rho_{k} = 350 \text{ kg/m}^{3}$                 | 922 [b]                       | 922 [b]                       | 922 [b]                       |
|                         | modification factor for k <sub>mod</sub> |                                                   |                               | k <sub>mod</sub> [a]          |                               |
| axial withdra           | wal capacity F <sub>ax</sub>             | <sub>,k,Rk</sub> . k <sub>mod</sub> [a] [b] [c] [ | [d]                           |                               |                               |
| strength o              |                                          | $\rho_{k} = 320 \text{ kg/m}^{3}$                 | 858 • k <sub>mod</sub>        | 858 • k <sub>mod</sub>        | 858 • k <sub>mod</sub>        |
| wood (EN                |                                          | , ,                                               | 922 • k <sub>mod</sub>        | 922 • k <sub>mod</sub>        | 922 • k <sub>mod</sub>        |
|                         | factor (NA to) E                         |                                                   |                               | = 1,30 [withdraw              |                               |
| design value capacity N | $X_d$ of the axial v                     | vithdrawal                                        |                               |                               |                               |
| strength o              | class C18                                | $\rho_k = 320 \text{ kg/m}^3$                     | <b>660</b> • k <sub>mod</sub> | <b>660</b> • k <sub>mod</sub> | <b>660</b> • k <sub>mod</sub> |
| wood (EN                | N 338) C24                               | $\rho_k = 350 \text{ kg/m}^3$                     | <b>709</b> • k <sub>mod</sub> | <b>709</b> • k <sub>mod</sub> | <b>709</b> • k <sub>mod</sub> |
| design value of t       | he axial load $X_d$                      | $= X_k / \gamma_M N$                              | m                             | inimum value of               | the rows:                     |
| strength class          | C18                                      | $\rho_k = 320 \text{ kg/m}^3$                     | (6) (12) (23)                 | (6) (12) (23)                 | (6) (12) (23)                 |
| wood (EN 33             | (8) C24                                  | $\rho_k = 350 \text{ kg/m}^3$                     | (6) (12) (24)                 | (6) (12) (24)                 | (6) (12) (24)                 |
| board span b            |                                          |                                                   |                               | 600                           |                               |
| fixing distan           | ice a                                    |                                                   |                               | 600                           |                               |

[a]: modification factor  $k_{mod}$  depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

<sup>[</sup>b]: with reduced thread diameter to fulfil the minimum  $l_{ef}$  demand (  $d=l_{ef}$  / 6=24,75/6=4,12 mm );

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 30^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

<sup>[</sup>e]:  $\alpha$  is the angle between the screw axis and the grain direction

|      | ole 6-3: Characteristic a                   |                 |                                      |                        |                                       |                        |
|------|---------------------------------------------|-----------------|--------------------------------------|------------------------|---------------------------------------|------------------------|
|      | ber, <b>screw</b> and 8 mm bord thickness   | oards (wit      | h the use of <b>RockPa</b>           |                        | nal 8 mm), with α≥ n (with the use of |                        |
|      | ation of the fixing in the                  |                 | M-middle                             | E-edge                 | C-corner                              |                        |
|      | -through N                                  | - 00 <b>uru</b> |                                      | W Intadic              | L cage                                | C corner               |
| Ι    | characteristic pull-thr                     | ough N          |                                      | 1066                   | 850                                   | 617                    |
|      | material factor Rockp                       |                 | nanufacturers                        | 2,0                    | 2,0                                   | 2,0                    |
|      | declaration)                                | 11 .1           | 1 37                                 | ·                      | ·                                     | ·                      |
| win  | <b>design</b> value $X_d$ of the d suction  | e pull-thro     | ougn N                               | 533                    | 425                                   | 309                    |
| WIII | average wind load in                        | N/m2            |                                      | 1992                   | 2161                                  | 2243                   |
|      |                                             | 11/111          |                                      | 1105                   | 482                                   | 236                    |
|      | average strength N<br>material factor Rockp | analy. G        | manufacturare                        | 1103                   | 402                                   | 230                    |
|      | declaration)                                | апстум (1       | nanuracturers                        | 2,0                    | 2,0                                   | 2,0                    |
|      | <b>design</b> value $X_d$ of the            | ough N          | 553                                  | 241                    | 118                                   |                        |
| with | ndrawal capacity                            |                 |                                      |                        |                                       |                        |
|      | characteristic w                            | vithdrawa       | l capacity F <sub>ax,k,Rk</sub> [b]  | ] [c] [d]              |                                       |                        |
|      | strength class                              | C18             | $\rho_{\rm k} = 320 \; {\rm kg/m^3}$ | 336 [b]                | 336 [b]                               | 336 [b]                |
|      | wood (EN 338)                               | C24             | $\rho_{k} = 350 \text{ kg/m}^{3}$    | 361 [b]                | 361 [b]                               | 361 [b]                |
|      |                                             | modifica        | ation factor for k <sub>mod</sub>    |                        | k <sub>mod</sub> [a]                  |                        |
|      | axial withdrawal capac                      |                 |                                      |                        | mod [ ]                               |                        |
|      | strength class                              | C18             | $\rho_{k} = 320 \text{ kg/m}^{3}$    | 336 • k <sub>mod</sub> | 336 • k <sub>mod</sub>                | 336 • k <sub>mod</sub> |
|      | wood (EN 338)                               | C24             | $\rho_{k} = 350 \text{ kg/m}^{3}$    | 361 • k <sub>mod</sub> | 361 • k <sub>mod</sub>                | 361 • k <sub>mod</sub> |
|      | material factor (NA<br>1:2004+A1:2008       | A to) EN        | 1995-1-                              | $\gamma_{ m M} =$      | 1,30 [withdrawal                      | capacity]              |
|      | <b>design</b> value $X_d$ of the            | axial with      | drawal capacity N                    | <b>!</b>               |                                       |                        |
|      | strength class                              | C18             | $\rho_k = 320 \text{ kg/m}^3$        | 258 • k <sub>mod</sub> | 258 • k <sub>mod</sub>                | 258 • k <sub>mod</sub> |
|      | wood (EN 338)                               | C24             | $\rho_k = 350 \text{ kg/m}^3$        | 278 • k <sub>mod</sub> | 278 • k <sub>mod</sub>                | 278 • k <sub>mod</sub> |
| desi | ign value of the axial l                    | $oadX_d = X_d$  | $\chi_k / \gamma_M N$                | mir                    | nimum value of th                     | ne rows:               |
|      | strength class                              | C18             | $\rho_k = 320 \text{ kg/m}^3$        | (6) (12) (23)          | (6) (12) (23)                         | (6) (12) (23)          |
|      | wood (EN 338)                               | C24             | $\rho_k = 350 \text{ kg/m}^3$        | (6) (12) (24)          | (6) (12) (24)                         | (6) (12) (24)          |
|      | board span b                                |                 |                                      |                        | 600                                   |                        |
|      | fixing distance a                           |                 |                                      |                        | 600                                   |                        |

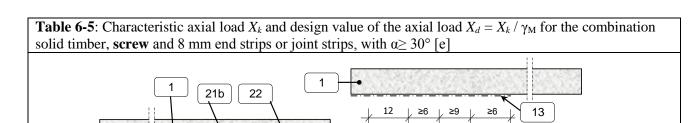
[a]: modification factor  $k_{mod}$  depends on the service (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

<sup>[</sup>b]: with reduced thread diameter to fulfil the minimum  $l_{ef}$  demand (  $d=l_{ef}$  / 6=16,75/6=2,79 mm );

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 30^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

<sup>[</sup>e]:  $\alpha$  is the angle between the screw axis and the grain direction


|                                     | ole 6-4: Characteristic                                 |                            |                                   |                               |                               | he combination soli    |
|-------------------------------------|---------------------------------------------------------|----------------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------|
|                                     | ber, <b>nail</b> 32 mm and 8 rd thickness               | s mm boards                | s (with the use of ga             |                               | 80° [e]<br>n (with the use of | a gasket)              |
| location of the fixing in the board |                                                         |                            |                                   | M-middle                      | E-edge                        | C-corner               |
| pull-through N                      |                                                         |                            |                                   | 111 IIIIaaic                  | L cage                        | C corner               |
| 1                                   | characteristic pull-th                                  | rough N                    |                                   | 752                           | 674                           | 577                    |
|                                     | material factor Rock declaration)                       | panel γ <sub>M</sub> (m    | anufacturers                      | 2,0                           | 2,0                           | 2,0                    |
|                                     | <b>design</b> value $X_d$ of the                        | he pull-throu              | ıgh N                             | 376                           | 337                           | 289                    |
| win                                 | d suction                                               |                            |                                   | <b>,</b>                      |                               |                        |
|                                     | average wind load in                                    | n N/m²                     |                                   | 2637                          | 4131                          | 5162                   |
|                                     | average strength N                                      |                            |                                   | 1009                          | 627                           | 397                    |
|                                     | material factor Rock declaration)                       | cpanel $\gamma_{\rm M}$ (n | nanufacturers                     | 2,0                           | 2,0                           | 2,0                    |
|                                     | <b>design</b> value $X_d$ of the                        | he pull-throu              | ıgh N                             | 505                           | 314                           | 199                    |
| with                                | hdrawal capacity                                        |                            |                                   |                               |                               |                        |
|                                     | characteristic withdra                                  | wal capacity               | $F_{ax,k,Rk}$ [c] [d]             |                               |                               |                        |
|                                     | strength class                                          | C18                        | $\rho_k = 320 \text{ kg/m}^3$     | 168                           | 168                           | 168                    |
|                                     | wood (EN 338)                                           | C24                        | $\rho_{k} = 350 \text{ kg/m}^{3}$ | 201                           | 201                           | 201                    |
|                                     |                                                         | modificat                  | ion factor for k <sub>mod</sub>   |                               | k <sub>mod</sub> [a]          |                        |
| İ                                   | axial withdrawal capa                                   |                            |                                   |                               |                               |                        |
|                                     | strength class                                          | C18                        | $\rho_{k} = 320 \text{ kg/m}^{3}$ | 168 • k <sub>mod</sub>        | 168 • k <sub>mod</sub>        | 168 • k <sub>mod</sub> |
|                                     | wood (EN 338)                                           | C24                        | $\rho_{k} = 350 \text{ kg/m}^{3}$ | 201 • k <sub>mod</sub>        | 201 • k <sub>mod</sub>        | 201 • k <sub>mod</sub> |
|                                     | material factor (N<br>1:2004+A1:2008                    | IA to) EN 19               | , ,                               |                               | 1,30 [withdrawal              |                        |
|                                     | <b>design</b> value $X_d$ of the                        | e axial withou             | lrawal capacity N                 | 1                             |                               |                        |
|                                     | strength class C18 $\rho_k = 320 \text{ kg/m}^3$        |                            | <b>129</b> • k <sub>mod</sub>     | <b>129</b> • k <sub>mod</sub> | <b>129</b> • k <sub>mod</sub> |                        |
|                                     | wood (EN 338)                                           | C24                        | $\rho_k = 350 \text{ kg/m}^3$     | 155 • k <sub>mod</sub>        | 155• k <sub>mod</sub>         | 155 • k <sub>mod</sub> |
| des                                 | design value of the axial load $X_d = X_k / \gamma_M N$ |                            |                                   | mir                           | nimum value of th             | ne rows:               |
|                                     | strength class                                          | C18                        | $\rho_k = 320 \text{ kg/m}^3$     | (6) (12) (23)                 | (6) (12) (23)                 | (6) (12) (23)          |
|                                     | wood (EN 338)                                           | C24                        | $\rho_k = 350 \text{ kg/m}^3$     | (6) (12) (24)                 | (6) (12) (24)                 | (6) (12) (24)          |
|                                     | board span b                                            |                            |                                   |                               | 600                           | -                      |
|                                     | fixing distance a                                       |                            |                                   |                               | 600                           |                        |

[a]: modification factor  $k_{mod}$  depends on the service class (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 80^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

<sup>[</sup>e]:  $\alpha$  is the angle between the screw axis and the grain direction



35

≥70 ≥100

Remark: for the explanation of the numbers see Figure 5

21b

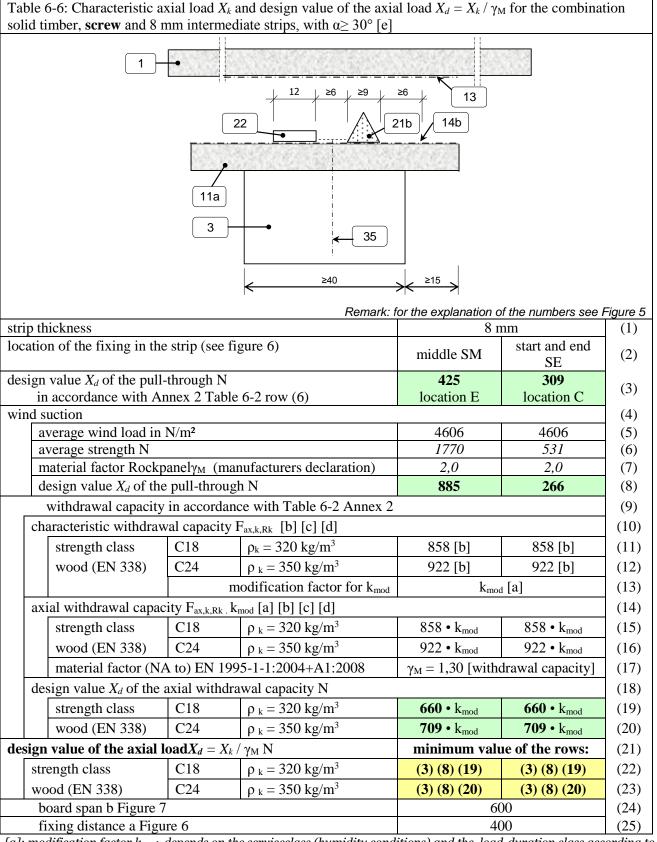
35

14b

|                                                                     |                           | Remark: f                                | or the explanation c          | it the numbers see i          | ⊢ıgure |
|---------------------------------------------------------------------|---------------------------|------------------------------------------|-------------------------------|-------------------------------|--------|
| strip thickness                                                     | 8 r                       | nm                                       | (1)                           |                               |        |
| location of the fixing in the                                       | middle SM                 | start and end<br>SE                      | (2)                           |                               |        |
| design value $X_d$ of the pull-                                     |                           | 425                                      | 309                           | (3)                           |        |
| in accordance with Ar                                               | nnex 2 Table              | e 6-2 row (6)                            | location E                    | location C                    |        |
| wind suction                                                        |                           | T                                        |                               | (4)                           |        |
| average wind load in                                                | N/m²                      |                                          | 4392                          | 4392                          | (5)    |
| average strength N                                                  |                           |                                          | 823                           | 247                           | (6)    |
| material factor Rockp                                               | anel $\gamma_{\rm M}$ (ma | nufacturers declaration)                 | 2,0                           | 2,0                           | (7)    |
| design value $X_d$ of the                                           | pull-throug               | gh N                                     | 412                           | 124                           | (8)    |
| withdrawal capacity                                                 | in accordar               | ace with Table 6-2 Annex 2               |                               |                               | (9)    |
| characteristic withdraw                                             | al capacity               | F <sub>ax,k,Rk</sub> [b] [c] [d]         |                               |                               | (10    |
| strength class                                                      | C18                       | $\rho_k = 320 \text{ kg/m}^3$            | 858 [b]                       | 858 [b]                       | (11    |
| wood (EN 338)                                                       | C24                       | $\rho_{k} = 350 \text{ kg/m}^{3}$        | 922 [b]                       | 922 [b]                       | (12    |
|                                                                     | r                         | nodification factor for k <sub>mod</sub> | k <sub>mod</sub> [a]          |                               |        |
| axial withdrawal capacity $F_{ax,k,Rk}$ . $k_{mod}$ [a] [b] [c] [d] |                           |                                          |                               |                               | (14    |
| strength class                                                      | C18                       | $\rho_k = 320 \text{ kg/m}^3$            | 858 • k <sub>mod</sub>        | 858 • k <sub>mod</sub>        | (15    |
| wood (EN 338)                                                       | C24                       | $\rho_k = 350 \text{ kg/m}^3$            | 922 • k <sub>mod</sub>        | 922 • k <sub>mod</sub>        | (16    |
| material factor (NA                                                 | (A to) EN 19              | 95-1-1:2004+A1:2008                      | $\gamma_{\rm M} = 1,30$ [with | drawal capacity]              | (17    |
| design value $X_d$ of the a                                         | axial withdr              | awal capacity N                          |                               |                               | (18    |
| strength class                                                      | C18                       | $\rho_k = 320 \text{ kg/m}^3$            | <b>660</b> • k <sub>mod</sub> | <b>660</b> • k <sub>mod</sub> | (19    |
| wood (EN 338)                                                       | C24                       | $\rho_k = 350 \text{ kg/m}^3$            | <b>709</b> • k <sub>mod</sub> | <b>709</b> • k <sub>mod</sub> | (20    |
| design value of the axial load $X_d = X_k / \gamma_M N$             |                           |                                          | minimum valı                  | ie of the rows:               | (21    |
| strength class                                                      | C18                       | $\rho_k = 320 \text{ kg/m}^3$            | (3) (8) (19)                  | (3) (8) (19)                  | (22    |
| wood (EN 338)                                                       | C24                       | $\rho_k = 350 \text{ kg/m}^3$            | (3) (8) (20)                  | (3) (8) (20)                  | (23    |
| board span b Figure 7                                               |                           |                                          | 600                           |                               | (24    |
| fixing distance a Figu                                              | re 6                      |                                          | 50                            | 00                            | (25)   |
| board span b Figure 7 fixing distance a Figure 6                    |                           |                                          |                               |                               | -      |

[a]: modification factor  $k_{mod}$  depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

13


11a 3

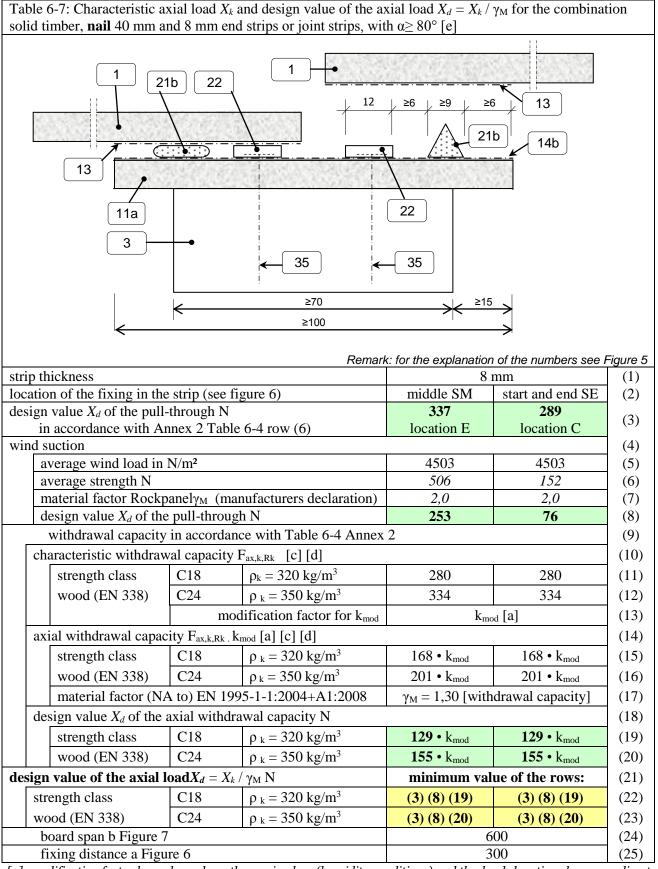
<sup>[</sup>b]: with reduced thread diameter to fulfil the minimum  $l_{ef}$  demand (  $d = l_{ef}$  / 6 = 24,75/6 = 4,12 mm );

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 30^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

<sup>[</sup>e]:  $\alpha$  is the angle between the screw axis and the grain direction



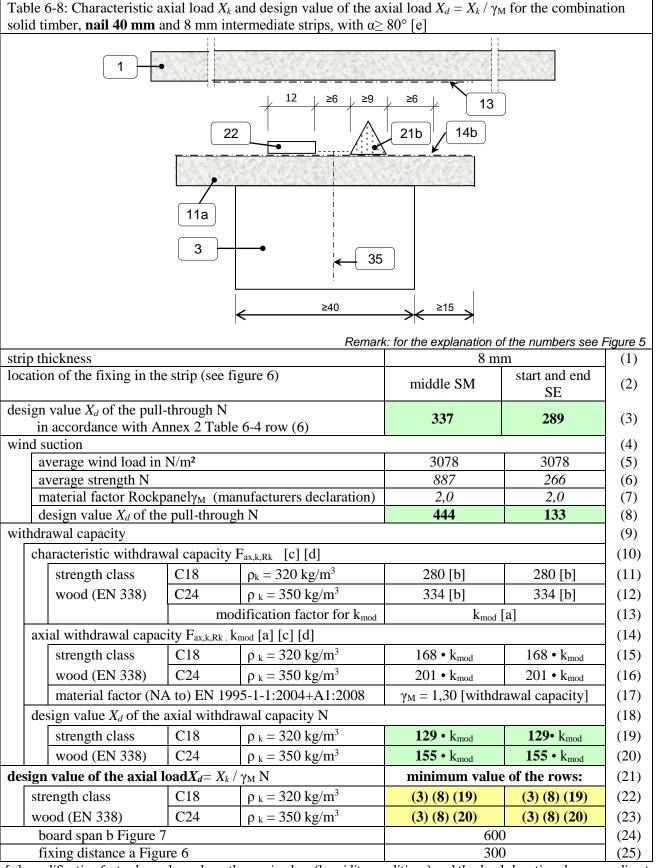

<sup>[</sup>a]: modification factor  $k_{mod}$  depends on the service lass (humidity conditions) and the load-duration class according to the National Annex of EN 1995-1-1

<sup>[</sup>b]: with reduced thread diameter to fulfil the minimum  $l_{ef}$  demand (  $d = l_{ef}$  / 6 = 24,75/6 = 4,12 mm );

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 30^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.38), (8.39) and (8.40)

<sup>[</sup>e]:  $\alpha$  is the angle between the screw axis and the grain direction




<sup>[</sup>a]:  $modification\ factor\ k_{mod}\ depends\ on\ the\ service class\ (humidity\ conditions)\ and\ the\ load-duration\ class\ according\ to\ the\ National\ Annex\ of\ EN\ 1995-1-1$ 

<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 80^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

<sup>[</sup>e]:  $\alpha$  is the angle between the nail axis and the grain direction



<sup>[</sup>a]:  $modification\ factor\ k_{mod}\ depends\ on\ the\ service class\ (humidity\ conditions)\ and\ the\ load-duration\ class\ according\ to\ the\ National\ Annex\ of\ EN\ 1995-1-1$ 

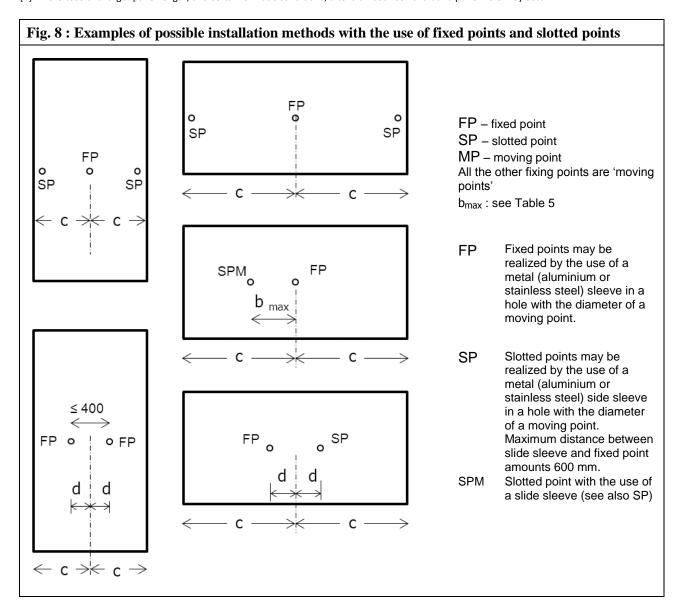
<sup>[</sup>c]: angle  $\alpha$  between shaft and the wood grain:  $\alpha \geq 80^{\circ}$ 

<sup>[</sup>d]: calculation in accordance with EN 1995-1-1:2004 + AC:2006 + A1:2008 (D) formula (8.23-a) and DIN EN 1995-1-1/NA:2010-12 Table NA.15

<sup>[</sup>e]:  $\alpha$  is the angle between the nail axis and the grain direction

For bonded applications the ROCKPANELstrip (item 11a on figure 3 in annex 1) must be mechanically fixed in such a way that it can move tension free on the wooden battens.

Therefore, the ROCKPANEL strip is mounted with fixed points and with moving points. The hole diameters for the fixing points are indicated in table 7 (screw and nail fixing).


The characteristic loads which may be taken for the combination ROCKPANEL strips and fixings (screw and nail fixing), are given in table 6-5, 6-6, 6-7 and 6-8 (position E and C).

The characteristic loads which may be taken for the combination boards and fixings (rivet, screw and nail fixing), are given in table 6-1, 6-2, 6-3 and 6-4 (position M, E and C)

| Table 7. Hole dimensions [mm] for RockPanel boards mechanically fixed and RockPanel strip in bonded applications |             |              |                |                            |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------|----------------------------|--|--|
| Fixing type                                                                                                      | Fixed point | Moving point | Slotted points | Board dimension considered |  |  |
| Screw                                                                                                            | 3,2         | 6,0          | 3,4 x 6,0      | 1200*3050                  |  |  |
| Nail                                                                                                             | 2,5         | 3,8          | 2,8 x 4,0      | 1200*1750 [b]              |  |  |
| Rivet [a] 5,2 8,0 5,2 x 8,0 1200*3050                                                                            |             |              |                |                            |  |  |
| Edge distances: $a_1 \ge 15$ mm and $a_2 \ge 50$ mm                                                              |             |              |                |                            |  |  |

<sup>[</sup>a] For correct fixing, a riveting tool with rivet spacer must be used

<sup>[</sup>b]: In the case of a larger panel length, and certain climatic conditions, a tension between shaft and panel-hole may occur.



## Annex 3 Fastener specification for wooden subframes

**Table 8.1** Ring-shank nail 2,7/2,9 x 32 and 2,7/2,9 x 40 mm Stainless steel in accordance with EN 10088 - Material number 1.4401 or 1.4578 Definitions in accordance with EN 14592:2008+A1:2012 d = 2.6 - 2.8 $d_2 = 2.8 - 3.0$ I for nail 32 = 31 - 32,5I for nail 40 = 39 - 40,5 $l_2$  for nail 32 = 24 - 26 $l_2$  for nail 40 = 32 - 34= ≤ 4,8  $I_2$  $= I_2 - I_p$ 1  $d_h = 5.8 - 6.3$  $h_t = 0.8 - 1.0$ 

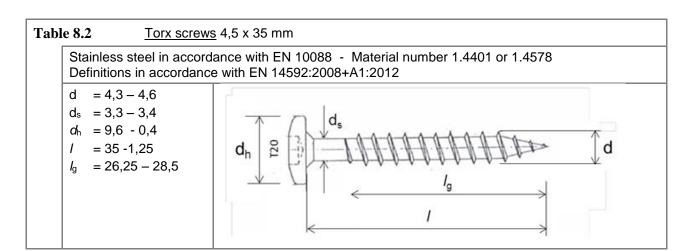



Table 8.3 - Fastener specification for metal sub-frames

| Rivet aluminium o                       | or stainless | steel               |                            |                             |                             |
|-----------------------------------------|--------------|---------------------|----------------------------|-----------------------------|-----------------------------|
| ^                                       |              | SFS                 | SFS Stainless              | MBE                         | MBE stainless               |
| 1                                       |              | Aluminium           | steel A4 [a]               | Aluminium                   | steel [b]                   |
|                                         | Code         | AP14-50180-S        | SSO-D15-50180              | 1290406                     | 1290806                     |
|                                         | Body         | aluminium EN        | stainless steel            | aluminium EN                | stainless steel             |
| d3                                      |              | AW-5019             | material number            | AW-5019                     | material number             |
|                                         |              | (AlMg5) in          | 1.4578 in                  | (AlMg5) in                  | 1.4567 in                   |
|                                         |              | accordance with     | accordance with            | accordance with             | accordance with             |
|                                         |              | EN 755-2            | EN 10088                   | EN 755-2                    | EN 10088                    |
|                                         | Mandrel      | stainless steel     | stainless steel            | stainless steel             | stainless steel             |
| 1 P P P P P P P P P P P P P P P P P P P |              | material number     | material number            | material number             | material number             |
|                                         |              | 1.4541 in           | 1.4541 in                  | 1.4541 in                   | 1.4541 in                   |
| 1 1 1                                   |              | accordance with     | accordance with            | accordance with             | accordance with             |
| 1.5                                     |              | EN 10088            | EN 10088                   | EN 10088                    | EN 10088                    |
|                                         | Pull-out     | $F_{mean,n} = 2038$ | $F_{mean,n} = 1428$        | $F_{\text{mean},10} = 2318$ | $F_{\text{mean},10} = 3212$ |
|                                         | strength     | s = 95              | s = 54                     | s = 85                      | s = 83                      |
|                                         |              | $F_{u,5} = 1882$    | $F_{u,5} = 1339$           | $F_{u,5} = 2155$            | $F_{u,5} = 3052$            |
|                                         | $d^1$        | 5                   | 5                          | 5                           | 5                           |
| di                                      | $d^2$        | 14                  | 15                         | 14                          | 14                          |
|                                         | $d^3$        | 2,7                 | 2,7                        | 2,7                         | 2,95                        |
|                                         | 1            | 18                  | 18                         | 18                          | 16                          |
|                                         | k            | 1,5                 | 1,5                        | 1,5                         | 1,5                         |
|                                         | profile      | aluminium           | steel                      | aluminium                   | steel                       |
|                                         |              | t ≥ 1,5 mm          | $t \ge 1,0 \text{ mm [a]}$ | $t \ge 1.8 \text{ mm}$      | $t \ge 1,5 \text{ mm [b]}$  |

- [a]: The minimum thickness of the vertical steel profiles is 1,0 mm. The steel quality is S320GD +Z EN 10346 number 1.0250 (or equivalent for cold forming). For minimum coating thickness see [c]
- [b]: The minimum thickness of the vertical steel profiles is 1,5 mm. The steel quality is EN 10025-2:2004 S235JR number 1.0038. For minimum coating thickness see [c]
- [c]: The minimum coating thickness (Z or ZA) is determined by the corrosion rate (amount of corrosion loss in thickness per year) which depends on the specific outdoor atmospheric environment (the Zinc Life Time Predictor can be used to calculate the Corrosion Rate in μm/y for a Z coating: <a href="http://www.galvinfo.com:8080/zclp/">http://www.galvinfo.com:8080/zclp/</a> (copyright The International Zinc association).

The coating designation (classification which determines the coating mass) shall be agreed between the contractor and the building owner.

Alternatively a hot dip galvanized coating according to EN ISO 1461 can be used.

#### Annex 4

Table 9 - Control plan for the manufacturer

| Nr                                                                                                        | Subject/type of control                                                                             | Test or control method                                                        | Criteria,<br>if any                                                                    | Minimum<br>number of<br>samples    | Minimum frequency of control                     |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------|--|
| (1)                                                                                                       | (2)                                                                                                 | (3)                                                                           | (4)                                                                                    | (5)                                | (6)                                              |  |
| Factory production control (FPC) [including testing of samples in accordance with a prescribed test plan] |                                                                                                     |                                                                               |                                                                                        |                                    |                                                  |  |
| 1                                                                                                         | Board thickness                                                                                     | EN 325                                                                        | 8 ± 0,5 mm                                                                             | 40 [a]                             | One board<br>for every<br>200 boards<br>produced |  |
| 2                                                                                                         | Density                                                                                             | EN 323                                                                        | $1200 \pm 100 \text{ kg/m}^3$                                                          | 40 [a]                             | One board<br>for every<br>200 boards<br>produced |  |
| 3                                                                                                         | Bending strength<br>dry parallel and<br>perpendicular to<br>the production<br>direction             | EN 310                                                                        | $f_{05} \ge 34,5 \text{ N/mm}^2$                                                       | 20 (length) +<br>20 (width)<br>[a] | One board<br>for every<br>200 boards<br>produced |  |
| 4                                                                                                         | Bending strength<br>after ageing<br>parallel and<br>perpendicular to<br>the production<br>direction | EN 310 Ageing in accordance with description in table 10                      | lowest individual strength $f \geq 28 \; \text{N/mm}^2$                                | 3 (length) +<br>2 (width)          | One board<br>for every<br>200 boards<br>produced |  |
| _                                                                                                         | Water absorption after 4 days                                                                       | see table 10                                                                  | ≤ 2 weight % after 4 days; if sample fails, the 2 <sup>nd</sup> sample must be tested. | 1 (2 in the case of fail)          | One board<br>for every<br>200 boards<br>produced |  |
| 0                                                                                                         | Organic material<br>content (resin<br>binder)                                                       | Glowing at 650° for at least 60 min. Remark: time depends on the type of oven | 14,5 ± 0,5 weight %                                                                    | 40 [a]                             | One board<br>for every<br>200 boards<br>produced |  |
| /                                                                                                         | Reaction to fire [b]                                                                                | EN 13162 loss on ignition Table B.2                                           | Table 1 EN 13501-1                                                                     | Three specimens [b]                | every two<br>years                               |  |
|                                                                                                           |                                                                                                     | controls are carried d manufacturer as p                                      | out by the sub-supplier a                                                              | and the docume                     | entation is                                      |  |
| 8                                                                                                         | Dowel-type fasten structures                                                                        |                                                                               | EN 14592, Annex ZA.2<br>Procedure for attestation                                      | Every 3 year                       |                                                  |  |
| 9                                                                                                         | EPDM foam gaske                                                                                     | et                                                                            | Manufacturers declaration                                                              | Every 3 year                       |                                                  |  |
| a] am                                                                                                     | ount of samples fro                                                                                 | om four different boa                                                         | ırds                                                                                   | I.                                 |                                                  |  |

<sup>[</sup>b] Small components, e.g. gaskets and seals shall be considered on the basis of EOTA Technical Report TR 021

#### Annex 5

Table 10 - Special methods of control and testing used for the evaluation

| Bending strength a | after ageing                                                                                    |                                                                          |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
|                    | Ageing of the 5 test pieces in (tab)water from 70°C ( with surface tension changing additives : |                                                                          |  |  |  |
| for i              | for instance 0,5 ml Triton per litre) for 30 minutes.                                           |                                                                          |  |  |  |
| Dete               | ermination of the b                                                                             | ending strength in accordance with EN-310 within 20 minutes after the    |  |  |  |
|                    |                                                                                                 | room with an air temperature between 17 and 23°C.                        |  |  |  |
| Water absorption   | 01                                                                                              | 1                                                                        |  |  |  |
|                    | water absorption b                                                                              | by the edges must be determined on test pieces W1 in the size 50*400 mm. |  |  |  |
|                    | •                                                                                               | e weight of the test pieces is determined.                               |  |  |  |
|                    |                                                                                                 | I with aluminium foil with the exception of one 50 mm edge.              |  |  |  |
|                    |                                                                                                 | ically placed in a bucket with tab water, with the 50 mm size without    |  |  |  |
|                    |                                                                                                 | ntally in the water. The edge must be 1 to 5 mm in the water (without    |  |  |  |
|                    | itives).                                                                                        | , ·                                                                      |  |  |  |
|                    | t conditions:                                                                                   |                                                                          |  |  |  |
| Wat                | Water temperature 17 - 23 °C                                                                    |                                                                          |  |  |  |
|                    | om temperature                                                                                  | 17 - 23 °C                                                               |  |  |  |
|                    | test piece                                                                                      | e W1 ———————————————————————————————————                                 |  |  |  |

Table 11 - Control plan for the notified body; corner stones

| Nr         | Subject/type of control                                                                                                                         | Test or<br>control<br>method | Criteria,<br>if any | Minimum<br>number of<br>samples | Minimum<br>frequency<br>of control |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|---------------------------------|------------------------------------|--|--|--|
| (1)        | (2)                                                                                                                                             | (3)                          | (4)                 | (5)                             | (6)                                |  |  |  |
|            | Initial type-testing of the product (ITT)                                                                                                       |                              |                     |                                 |                                    |  |  |  |
| 1          | Testing to determine the product performance has been carried out under the responsibility of the TAB as part of the procedure to issue the ETA |                              |                     |                                 |                                    |  |  |  |
| ]          | Initial inspection of factory and factory production control (FPC)                                                                              |                              |                     |                                 |                                    |  |  |  |
| 1          | See table 9                                                                                                                                     |                              |                     |                                 |                                    |  |  |  |
| Continuous | Continuous surveillance, judgment and assessment of factory production control (FPC)                                                            |                              |                     |                                 |                                    |  |  |  |
| 1          | See table 9                                                                                                                                     |                              |                     |                                 |                                    |  |  |  |

#### Annex 6

Table 12 – Impact resistance: Definition of use categories

| Use category                                                                                                                      | Description                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A zone readily accessible at ground level to the public and vulnerable to hard impacts but not subjected to abnormally rough use. |                                                                                                                                                                                                                                                            |  |
| П                                                                                                                                 | A zone liable to impacts from thrown or kicked objects, but in public locations where the height of the kit will limit the size of the impact; or at lower levels where access to the building is primarily to those with some incentive to exercise care. |  |
| A zone not likely to be damaged by normal impacts caused by peopl or kicked objects.                                              |                                                                                                                                                                                                                                                            |  |
| IV                                                                                                                                | A zone out of reach from ground level                                                                                                                                                                                                                      |  |

The hard body impact with steel ball represents the action from heavy, non-deformable objects, whichaccidentally hit the kit.